Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-08
Beam Focusing Compact Wideband Antenna Loaded with MU-Negative Metamaterial for Wireless LAN Application
By
Progress In Electromagnetics Research C, Vol. 83, 33-44, 2018
Abstract
This article proposes a beam focusing compact wideband microstrip antenna loaded with mu negative (MNG) metamaterial. The antenna is designed to operate in the frequency spectra of IEEE 802.11a wireless LAN 5.15-5.85 GHz. The controlling of the beam direction has been investigated using eight different switching combinations of 12 PIN diodes which are integrated in the metamaterial unit cells. The main beam is found to be focused in -ve y, +ve y and omnidirectional in yz plane in agreement with switching condition of the metamaterial unit cell. The maximum gain enhancement of 7 dB is obtained at 4.9 GHz as the beam of the power pattern is focused in the negative y direction. The basic antenna with patch dimension (0.14λ × 0.14λ) provides wide impedance bandwidth of about 40%. Two prototypes of basic and proposed antennas have been developed using a low profile FR-4 substrate. The simulation results are found in good agreement with the measurement ones.
Citation
Sourav Roy Krishna Lal Baishnab Ujjal Chakraborty , "Beam Focusing Compact Wideband Antenna Loaded with MU-Negative Metamaterial for Wireless LAN Application," Progress In Electromagnetics Research C, Vol. 83, 33-44, 2018.
doi:10.2528/PIERC18012908
http://www.jpier.org/PIERC/pier.php?paper=18012908
References

1. Brown, E. R., "RF-MEMS switches for reconfigurable integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 11, 1868-1880, Nov. 1998.
doi:10.1109/22.734501

2. Bai, Y.-Y., S. Xiao, M.-C. Tang, Z.-F. Ding, and B.-Z. Wang, "Wide-angle scanning phased array with pattern reconfigurable elements," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4071-4076, Nov. 2011.

3. Ren, J., X. Yang, J.-Y. Yin, and Y.-Z. Yin, "A novel antenna with reconfigurable patterns using H-shaped structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 915-918, Jan. 2015.
doi:10.1109/LAWP.2014.2387292

4. Akgol, O., O. Altintas, E. E. Dalkilinc, E. Unal, M. Karaaslan, and C. Sabah, "Metamaterial absorber-based multi sensor applications using a meander-line resonator," Optical Engineering, Vol. 56, No. 8, 087104, Aug. 2017.
doi:10.1117/1.OE.56.8.087104

5. Altintas, O., M. Aksoy, O. Akgol, E. Unal, M. Karaaslan, and C. Sabahc, "Fluid, strain and rotation sensing applications by using metamaterial based sensor," Journal of the Electrochemical Society, Vol. 164, No. 12, B567-B573, 2017.
doi:10.1149/2.1971712jes

6. Bakir, M., M. Karaaslan, O. Altintas, M. Bagmanci, V. Akdogan, and F. Temurtas, "Tunable energy harvesting on UHF bands especially for GSM frequencies," International Journal of Microwave and Wireless Technologies, 1-10, 2017.

7. Akgol, O., O. Altintas, E. Unal, M. Karaaslan, and F. Karadag, "Linear to left- and right-hand circular polarization conversion by using a metasurface structure," International Journal of Microwave and Wireless Technologies, 2017.

8. Altintas, O., E. Unal, O. Akgol, M. Karaaslan, F. Karadagy, and C. Sabahz, "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, 2017.

9. Xu, Z. X. and W. G. Lin, "Controllable absorbing structure of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.
doi:10.2528/PIER06120801

10. Karaaslan, M., E. Unal, E. Tetik, K. Delihacıog, F. Karadag, and F. Dincer, "Low profile antenna radiation enhancement with novel electromagnetic band gap structures," IET Microw. Antennas Propag., Vol. 7, No. 3, 215-221, 2013.
doi:10.1049/iet-map.2012.0545

11. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606

12. Patel, S. K., C. Argyropoulos, and Y. P. Kosta, "Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators using RF MEMS switches,", DOI: 10.1049/iet-map.2017.0319.

13. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2874-2879, May 2014.
doi:10.1109/TAP.2014.2308516

14. Kim, I. and Y. Rahmat-Samii, "Electromagnetic band gap-dipole sub array antennas creating an enhanced tilted beams for future base station," IET Microw. Antennas Propag., Vol. 9, No. 4, 319-327, 2015.
doi:10.1049/iet-map.2014.0104

15. Patel, S. K. and C. Argyropoulos, "Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 7, 945-961, 2016.
doi:10.1080/09205071.2016.1167633

16. Rezaeieh, S. A., M. A. Antoniades, and A. M. Abbosh, "Compact wideband loop antenna partially loaded with mu-negative metamaterial unit cells for directivity enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1893-1896, 2016.
doi:10.1109/LAWP.2016.2542799

17. Li, D., Z. Szabo, X. Qing, E. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Dec. 2012.
doi:10.1109/TAP.2012.2213231

18. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

19. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator," IEEE Antennas Propag. Magaz., Vol. 55, No. 5, 202-211, Oct. 2013 (in English).
doi:10.1109/MAP.2013.6735515

20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003.
doi:10.1109/TAP.2003.813622