Vol. 94

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Multi-Negative Index Band Metamaterial-Inspired Microfluidic Sensors

By Nantakan Wongkasem and Mark Ruiz
Progress In Electromagnetics Research C, Vol. 94, 29-41, 2019


Simple, compact and high sensitivity metamaterial-inspired microfluid sensors are developed to detect and classify dielectric fluids in the X-band regime using reflection coefficients. Multi-negative refractive index band metamaterial structure is specifically designed as a sensing enhancer, where the multi negative bands can effectively trigger the electromagnetic properties, as well as enhance the differentiation between the testing samples. The geometry of the metamaterial enhancer and its arrangement with the microfluidic channel and radiating patch antenna are optimized to reach the highest sensitivity of the samples' depiction. The proposed sensors were tested on methanol and ethanol traces, where sets of complex permittivity were varied. Distinguishable frequency responses generated from different samples at three resonances specify the capability of classifying the fluid concentration.


Nantakan Wongkasem and Mark Ruiz, "Multi-Negative Index Band Metamaterial-Inspired Microfluidic Sensors," Progress In Electromagnetics Research C, Vol. 94, 29-41, 2019.


    1. Zhou, H., D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and Z. Mu, "Multi-band sensing for dielectric property of chemical using metamaterial integrated microfluidic sensor," Scientific Reports, Vol. 8, 14801, 2018.

    2. Salim, A. and S. Lim, "Review of recent metamaterials microfluidic sensors," Sensor, Vol. 18, 232, 2018.

    3. Weina, L., S. Haoran, and L. Xu, "A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor," Sensor, Vol. 18, 1438, 2018.

    4. Bakır, M., M. Karaaslan, E. Unal, F. Karadag, F. O. Alkurt, O. Altınta¸s, S. Dalgac, and C. Sabah, "Microfluidic and fuel adulteration sensing by using chiral metamaterial sensor," J. Electrochem. Soc., Vol. 165, 11, 2018.

    5. Su, L., J. Mata-Contreras, P. Velez, and F. Martin, "A review of sensing strategies for microwave sensors based on metamaterial-inspired resonator: Dielectric characterization, displacement, and angular velocity measurements for health diagnosis, telecommunication, and space applications," Int. J. of Antennas and Propagation, 5619728, 2017.

    6. Velez, P., L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martin, "Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonator for dielectric characterization of liquids," IEEE Sensors Journal, Vol. 17, 20, 2017.

    7. Bakir, M., "Electromagnetic-based microfluidic sensor applications," J. Electrochem. Soc., Vol. 164, B488-B494, 2017.

    8. Shih, K., P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, "Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles," J. Appl. Phys., Vol. 121, 023102, 2017.

    9. Saghati, A. P., J. S. Batra, J. Kameoka, and K. Entesari, "A metamaterial-inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals," IEEE Trans. Microw. Theory Tech., Vol. 65, 2558-2570, 2017.

    10. Sadeqi, A. and S. Sonkusale, "Low-cost metamaterial-on-paper chemical sensor," Transducers Int. Conf. Solid-State Sens., Actuators Microsyst., Vol. 25, 1437-1440, 2017.

    11. Awang, R. A., F. J. Tovar-Lopez, T. Baum, S. Sriram, and W. S. T. Rowe, "Meta-atom microfluidic sensor for measurement of dielectric properties of liquids," J. Appl. Phys., Vol. 121, 094506, 2017.

    12. Salim, A. and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, 1802, 2016.

    13. Kim, H. K., D. Lee, and S. A. Lim, "Fluidically tunable metasurface absorber for fexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, 1246, 2016.

    14. Long, J. and B. Wang, "A metamaterial-inspired sensor for combined inductive-capacitive," Appl. Phys. Lett., Vol. 106, 074104, 2015.

    15. Kim, H. K., M. Yoo, and S. Lim, "Novel ethanol chemical sensor using microfluidic metamaterial," Proceedings of the IEEE International Symposium on Antennas and Propagation & National Radio Science Meeting, 1358-1359, Vancouver, BC, Canada, Jul. 2015.

    16. Byford, J. A., K. Y. Park, and P. Chahal, "Metamaterial inspired periodic structure used for microfluidic sensing," Proceedings of the Electronic Components Technology Conference, 1997-2002, San Diego, CA, USA, May 2015.

    17. Rawat, V., S. Dhobale, and S. N. Kale, "Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators," J. Appl. Phys., Vol. 116, 164106, 2014.

    18. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 2014.

    19. Abduljabar, A., D. J. Rowe, A. Porch, and D. A. Barrow, "Novel microwave microfluidic sensor using a microstrip split-ring resonator," IEEE Trans. Microw. Theory Tech., Vol. 62, 679-688, 2014.

    20. Withayachumnankul, W., K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sensors and Actuators A: Physical, Vol. 189, 233-237, 2013.

    21. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 2, 972-978, 2013.

    22. Agarwal, S. and Y. K. Prajapati, "Multifunctional metamaterial surface for absorbing and sensing applications," Optics Communications, Vol. 439, No. 15, 304-307, 2019.

    23. Agarwal, S., Y. K. Prajapati, and V. Mishra, "Thinned fibre bragg grating as a fuel adulteration sensor: Simulation and experimental study," Opto-Electronics Review, Vol. 23, No. 4, 231-238, 2015.

    24. Afapour, Z. O. V., Y. A. H. Ajati, and M. O. H. Ajati, "Graphene-based mid-infrared biosensor," J. Opt. Soc. Am. B, Vol. 34, 2586-2592, 2017.

    25. Geng, Z., X. Zhang, Z. Fan, X. Lv, and H. Chen, "A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage," Sci. Rep., Vol. 7, 1-11, 2017.

    26. Sreekanth, K. V., Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, "Extreme sensitivity biosensing platform based on hyperbolic metamaterials," Nat. Mater., Vol. 15, 621-627, 2016.

    27. Aristov, A. I., M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, "3D plasmonic crystal metamaterials for ultra-sensitive biosensing," Sci. Rep., Vol. 6, 1-8, 2016.

    28. Chen, M., F. Fan, S. Shen, X. Wang, and S. Chang, "Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial," Appl. Opt., Vol. 55, 6471-6474, 2016.

    29. Lee, D.-K. K., J.-H. H. Kang, J.-S. S. Lee, H.-S. S. Kim, C. Kim, J. Hun Kim, T. Lee, J.-H. H. Son, Q.-H. H. Park, and M. Seo, "Highly sensitive and selective sugar detection by terahertz nano-antennas," Sci. Rep., Vol. 5, 1-7, 2015.

    30. Wu, P. C., G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, "Vertical split-ring resonator based nanoplasmonic sensor," Appl. Phys. Lett., Vol. 105, 3898, 2014.

    31. Torun, H., F. Cagri Top, G. Dundar, and A. D. Yalcinkaya, "An antenna-coupled split-ring resonator for biosensing," J. Appl. Phys., Vol. 116, 124701, 2014.

    32. Lee, H. J., J. H. Lee, H. S.Moon, I. S. Jang, J. S. Choi, J. G. Yook, and H. Jung, "A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules," Sens. Actuators B Chem., Vol. 169, 26-31, 2012.

    33. Chen, T., S. Li, and H. Sun, "Metamaterials application in sensing," Sensors, Vol. 12, 2742-2765, 2012.

    34. Zijlstra, P., P. M. R. Paulo, and M. Orrit, "Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod," Nat. Nanotechnol., Vol. 7, 379-382, 2012.

    35. Lee, H. J. and J. G. Yook, "Biosensing using split-ring resonators at microwave regime," Appl. Phys. Lett., Vol. 92, 10-13, 2008.

    36. White, G. M., "The origins and the future of microfluidics," Nature, Vol. 442, 368-373, 2006.

    37. Su, L., J. Naqui, J. Mata-Contreras, and F. Martın, "Modeling metamaterial transmission lines loaded with pairs of coupled split ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 14, 68-71, 2015.

    38. Su, L., J. Naqui, J. Mata-Contreras, and F. Martin, "Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split ring resonators (CSRRs)," IEEE Antennas Wireless Propag. Lett., Vol. 15, 154-157, 2016.

    39. Su, L., J. Naqui, J. Mata-Contreras, and F. Martın, "Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): Modeling and optimization for differential sensing applications," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 12, 4362-4370, Dec. 2016.

    40. Su, L., J. Mata-Contreras, and F. Martın, "Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications," Sensors, Vol. 16, No. 12, 2195, 2016.

    41. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.

    42. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," Journal of Optics, Vol. 14, 105103, 2012.

    43. Panpradit, W., A. Sonsilphong, C. Soemphol, and N. Wongkasem, "High negative refractive index chiral metamaterials," Journal of Optics, Vol. 14, 075101, 2012.

    44. Matra, K. and N. Wongkasem, "Left-handed chiral isotropic metamaterials: Analysis and detailed numerical study," Journal of Optics A: Pure and Applied Optics, Artificial Chiral Materials, Vol. 11, 074011, 2009.

    45. Sonsilphong, A. and N. Wongkasem, "Mid-infrared circular polarization switching in helical metamaterials," Journal of Optics, Vol. 18, 115102, 2016.

    46. Sonsilphong, A., P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, and N. Wongkasem, "Flexible bi-layer terahertz chiral metamaterials," Journal of Optics, Vol. 17, 085101, 2015.

    47. Fang, L., M. Wei, N. Wongkasem, H. Jaradat, A. Mokhlis, J. Shen, A. Akyurtlu, K. Marx, C. Barry, and J. Mead, "Tin assisted transfer of electroplated metal nanostructures and its application in flexible chiral metamaterials," Microelectronic Engineering, Vol. 107, 42-49, 2013.

    48. Soemphol, C., S. F. Kitchin, M. A. Fiddy, and N. Wongkasem, "Electromagnetic responses of curved fishnet structures: Near-zero refractive index with lower loss," Journal of Optics, Vol. 18, 025102, 2016.

    49. Soemphol, C., A. Sonsilphong, and N. Wongkasem, "Metamaterials with near-zero refractive index produced using fishnet structures," Journal of Optics, Vol. 16, 015104, 2013.

    50. Mohammadia, A., A. Ismaila, M. A. Mahdia, R. S. A. R. Abdullaha, M. M. Isab, and A. R. Sadrolhosseinic, "Carbon-nanotube-based FR-4 patch antenna as a bio-material sensor," Procedia Engineering, Vol. 41, 724-728, 2012.

    51. Bao, J. Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, 4441, 1996.

    52. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773, 1996.

    53. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.

    54. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.

    55. Rosa, E. B., Bulletin of the Bureau of Standards, Vol. 4, 301-344, Washington Government Printing Office, Washington D.C., 1908.

    56. Vendik, O. G., S. P. Zubko, and M. A. Nikol’skii, "Modeling and calculation of the capacitance of a planar capacitor containing a ferroelectric thin film," Tech. Phys., Vol. 44, No. 4, 349-355, 1999.

    57. Arritt, B. J., D. R. Smith, and T. Khraishi, "Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters," J. of Applied Science, Vol. 109, 073512, 2011.

    58. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediums," Microw. Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005.

    59. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative and positive phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Tech. Lett., Vol. 49, No. 6, 1245-1246, 2007.

    60. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," Journal of Optics, Vol. 12, 035101, 2010.