Vol. 111

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-04-11

Wideband Dual Polarized Compact Design of Pi-Shape Microstrip Antenna for GSM, ISM, and Satellite Applications

By Aarti G. Ambekar and Amit A. Deshmukh
Progress In Electromagnetics Research C, Vol. 111, 241-256, 2021
doi:10.2528/PIERC21022302

Abstract

The design of a compact Pi-shape microstrip antenna for dual-polarized wideband response is proposed. The Pi-shape geometry is realized by modifying a compact C-shape patch. The two stubs placed on the Pi-shape patch edge, optimize the spacing in between the higher order TM20 and TM30 modes with respect to the fundamental TM10 mode which yield a bandwidth of more than 430 MHz (>35%). On an air suspended substrate, antenna exhibits broadside gain of more than 5 dBi over the impedance bandwidth. The orthogonal surface current variations across the TM10, TM20 and TM30 modes realize polarization agility satisfying the requirements of GSM900/navigation satellite applications/ISM900. With respect to the band start frequency, the proposed configuration offers 11% reduction as compared with the equivalent rectangular microstrip antenna. Further, by defining the resonant length at each of the Pi-shape patch modes, the formulation for their resonant frequency is proposed. The Pi-shape antennas redesigned using them at the given fundamental mode frequency yield similar dual polarized wideband responses offering bandwidth of > 35%.

Citation


Aarti G. Ambekar and Amit A. Deshmukh, "Wideband Dual Polarized Compact Design of Pi-Shape Microstrip Antenna for GSM, ISM, and Satellite Applications," Progress In Electromagnetics Research C, Vol. 111, 241-256, 2021.
doi:10.2528/PIERC21022302
http://www.jpier.org/PIERC/pier.php?paper=21022302

References


    1. Garg, R., P. Bhartia, and I. Bahl, Microstrip Antenna Design Handbook, Artech House, London, 2001.

    2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, 1st Ed., Artech House, USA, 2003.

    3. Wong, K. L., Compact and Broadband Microstrip Antennas, 1st Ed., John Wiley & Sons, Inc., New York, USA, 2002.
    doi:10.1002/0471221112

    4. Balanis, C. A., Antenna Theory & Design, 3rd Ed., John Wiley & Sons, Inc., 2005.

    5. Zhao, F., W. Zhang, L. G. Han, and R. Yang, "A wideband dual-polarized patch antenna fed with the aperture-coupled microstrip," Electromagnetics, Vol. 38, No. 1, 58-69, 2018.
    doi:10.1080/02726343.2017.1409488

    6. Ghorbani, K. and R. B. Waterhouse, "Dual polarized wide-band aperture stacked patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2171-2175, 2004.
    doi:10.1109/TAP.2004.832484

    7. Row, J.-S., S. H. Yeh, and K. L. Wong, "Compact dual-polarized microstrip antennas," Microwave and Optical Technology Letters, Vol. 27, No. 4, 284-287, 2004.
    doi:10.1002/1098-2760(20001120)27:4<284::AID-MOP21>3.0.CO;2-L

    8. Lam, K. Y., K. M. Luk, K. F. Lee, H. Wong, and K. B. Ng, "Small circularly polarized U-slot wideband patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 87-90, 2011.
    doi:10.1109/LAWP.2011.2110631

    9. Wong, K.-L., C. T. Hao, and W. C. Tzung, "Broadband dual-polarized aperture-coupled patch antennas with modified H-shaped coupling slots," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 188-191, 2002.
    doi:10.1109/8.997993

    10. Wong, K.-L. and T. W. Chiou, "Broadband dual-polarized patch antennas fed by capacitively coupled feed and slot-coupled feed," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 3, 346-351, 2002.
    doi:10.1109/8.999625

    11. Deshmukh, A. A., S. Pawar, A. G. Ambekar, P. Kamble, and K. P. Ray, "Compact Y-shape antenna for dual polarized wideband response," IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, 2017.

    12. Jin, Y. and Z. Du, "Broadband dual-polarized F-probe fed stacked patch antenna for base stations," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1121-1124, 2015.
    doi:10.1109/LAWP.2015.2395422

    13. Shad, S., Z. Rahimian, and M. Bemani, "Design of a wideband dual-polarized microstrip patch antenna with novel structure for WLAN application," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1599-1602, 2016.
    doi:10.1002/mop.29861

    14. Ryu, K. S. and A. A. Kishk, "Wideband dual-polarized microstrip patch excited by hook shaped probes," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3645-3649, 2008.
    doi:10.1109/TAP.2008.2007377

    15. Xie, J.-J., Y.-Z. Yin, J. Ren, and T. Wang, "A wideband dual-polarized patch antenna with electric probe and magnetic loop feeds," Progress In Electromagnetics Research, Vol. 132, 499-515, 2012.
    doi:10.2528/PIER12083107

    16. Xue, M., J. Liu, Z. Zhao, X. Yang, and Y. Ying, "Wideband dual polarized hybrid fed patch antenna," International Journal of RF Microwave Computer Aided Engineering, Vol. 29, No. 6, 2019.
    doi:10.1002/mmce.21711

    17. Lian, R., S.-F. Zheng, Y.-Z. Yin, J. Wu, S. Zhang, and G. Zhang, "A single-layer wideband dual-polarized antenna with high isolation," Progress In Electromagnetics Research C, Vol. 49, 115-122, 2014.
    doi:10.2528/PIERC14031904

    18. Rambabu, K., M. Alam, J. Bornemann, and M. A. Stuchly, "Compact wideband dual-polarized microstrip patch antenna," IEEE Antennas and Propagation Society Symposium, Vol. 2, 1955-1958, CA, USA, 2004.
    doi:10.1109/APS.2004.1330587

    19. Gao, S. C., L. W. Li, M. S. Leong, and T. S. Yeo, "A novel dual-polarized, wide-band microstrip patch antenna with aperture coupling," IEEE Antennas and Propagation Society International Symposium, Digest, Vol. 4, 78-81, Held in Conjunction with: USNC/URSI National Radio Science Meeting, Boston, MA, USA, 2001.

    20. Li, B., Y.-Z. Yin, H. Wei, D. Yang, and Y. Zhao, "Wideband dual-polarized patch antenna with low cross polarization and high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 427-430, 2012.

    21. Tang, Z., J. Liu, Y. M. Cai, J. Wang, and Y. Yin, "A wideband differentially fed dual-polarized stacked patch antenna with tuned slot excitations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 2055-2060, 2018.
    doi:10.1109/TAP.2018.2800764

    22. Xie, J. J., X. L. Liu, Y. Z., and J. H. Wang, "Wideband dual-polarized electromagnetic-fed patch antenna with high isolation and low cross-polarization," Electronics Letters, Vol. 49, No. 3, 171-173, 2013.
    doi:10.1049/el.2012.3934

    23. Babakhani, B. and S. Sharma, "Wideband frequency tunable concentric circular microstrip patch antenna with simultaneous polarization reconfiguration," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 203-216, 2015.
    doi:10.1109/MAP.2015.2414666

    24. Yang, Z.-X., H.-C. Yang, J.-S. Hong, and Y. Li, "Bandwidth enhancement of a polarization-reconfigurable patch antenna with stair-slots on the ground," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 579-582, 2014.
    doi:10.1109/LAWP.2014.2312971

    25. CST Microwave Studio, , Version 2019.

    26. Ambekar, A. G., A. A. Deshmukh, S. Pawar, and K. P. Ray, "Dual polarized variations of pshape microstrip antenna loaded with stub," Proceedings of International Conference on Wireless Communication. Lecture Notes on Data Engineering and Communications Technologies Springer, Vol. 36, 257-266, 2020.

    27. Liu, N.-W., L. Zhu, W. W. Choi, and G. Fu, "A low-profile wideband aperture-fed microstrip antenna with improved radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 2018.

    28. Liu, N., L. Zhu, and W. Choi, "A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM10 and TM30 modes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1607-1614, 2017.
    doi:10.1109/TAP.2017.2670329

    29. Wen, J., D. Xie, and L. Zhu, "Bandwidth-enhanced high-gain microstrip patch antenna under TM30 and TM50 dual-mode resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 1976-1980, 2019.
    doi:10.1109/LAWP.2019.2935679

    30. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, 2019.
    doi:10.1109/TAP.2018.2885433

    31. Yoo, J. U. and H.-W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
    doi:10.1109/LAWP.2020.3021491

    32. Zhang, J., L. Zhu, Q. Wu, N. Liu, and W. Wu, "A compact microstrip-fed patch antenna with enhanced bandwidth and harmonic suppression," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5030-5037, 2016.
    doi:10.1109/TAP.2016.2618539

    33. Perli, B. R. and A. M. Rao, "Characteristic mode analysis of wideband microstrip antenna," Progress In Electromagnetic Research C, Vol. 97, 201-212, 2019.
    doi:10.2528/PIERC19091401