Vol. 114
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-28
Partial Electrical Equivalent Circuits and Finite Difference Methods Coupling; Application to Eddy Currents Calculation for Conductive and Magnetic Thin Plates
By
Progress In Electromagnetics Research C, Vol. 114, 83-96, 2021
Abstract
This paper presents a new integro-differential coupling between partial equivalent electrical circuits (PEEC) and finite difference method (FDM) taking into account the magnetization effect. This coupling is intended for thin plates having simultaneously significant conductive and magnetic properties in presence of exciting coils of complex topologies. These cases exist in eddy current nondestructive testing (ECNDT), eddy current separation, induction or levitation melting devices and more other applications. The choice of FDM, is in relation with rectangular surfaces generated by numerical meshes leading to mathematical integrations of magnetic and electrical quantities with independent variables, unlike more complicated forms of surfaces generated by finite element method (FEM) or others. Fully successful analytical expressions have been realized and implemented in overall coupling process. The PEEC method is mainly used to calculate the magnetic field applied to the nodes of the plate from different inclined polygonal coils. The results of magnetic field and eddy current distributions on thin plates are presented, and parts of them are compared with those realized by Flux 3D software.
Citation
Saida Djemoui, Hicham Allag, Mohammed Chebout, and Houssem Rafik El-Hana Bouchekara, "Partial Electrical Equivalent Circuits and Finite Difference Methods Coupling; Application to Eddy Currents Calculation for Conductive and Magnetic Thin Plates," Progress In Electromagnetics Research C, Vol. 114, 83-96, 2021.
doi:10.2528/PIERC21051602
References

1. Dodd, C. V. and W. E. Deeds, "Analytical solutions to eddy-current probe-coil problems," Journal of Applied Physics, Vol. 39, No. 6, 2829-2838, 1968.
doi:

504 Gateway Time-out


2. Bowler, J. R., "Eddy-current interaction with an ideal crack. 1: The forward problem," Journal of Applied Physics, Vol. 75, No. 12, 8128-8137, 1994.
doi:The server didn't respond in time.

3. Chebout, M., M. R. Mekideche, A. Hafaifa, A. Kouzou, and H. Allag, "Impedance measurement and computation for the steam generator tube integrity using the ECNDT technique," Elektrotehniški Vestnik, Vol. 85, No. 5, 235-240, 2018.
doi:

4. Maraspin, F. P., P. Bevilacqua, and P. Rem, "Modelling the throw of metals and nonmetals in eddy current separations," International Journal of Mineral Processing, Vol. 73, No. 1, 1-11, 2004.
doi:10.1016/S0301-7516(03)00081-4

5. Nagel, J. R., "Fast finite-difference calculation of Eddy currents in thin metal sheets," Applied Computational Electromagnetic Society Journal, Vol. 33, No. 6, 575-584, 2018.

6. Okress, E. C., D. M. Wroughton, G. Comenetz, P. H. Brace, and J. C. R. Kelly, "Electromagnetic levitation of solid and molten metals," Journal of Applied Physics, Vol. 23, No. 5, 545-552, 1952.
doi:10.1063/1.1702249

7. Fromm, E. and H. Jehn, "Electromagnetic forces and power absorption in levitation melting," British Journal of Applied Physics, Vol. 16, No. 5, 653-662, 1965.
doi:10.1088/0508-3443/16/5/308

8. Dholu, N., J. R. Nagel, D. Cohrs, and R. K. Rajamani, "Eddy current separation of nonferrous metals using a variable-frequency electromagnet," KONA Powder and Particle Journal, Vol. 34, 241-247, 2017.
doi:10.14356/kona.2017012

9. Smith, Y. R., J. R. Nagel, and R. K. Rajamani, "Electrodynamic Eddy current separation of end of-life PV," Energy Technology, The Minerals, Metals and Materials Series, 379-386, Springer, Cham., 2017.
doi:10.1007/978-3-319-52192-3_37

10. Ray, J. D., J. R. Nagel, D. Cohrs, and R. K. Rajamani, "Forces on particles in time-varying magnetic fields," KONA Powder and Particle Journal, Vol. 35, 251-257, 2018.
doi:10.14356/kona.2018016

11. Fireteanu, V., B. Paya, J. Nuns, and T. Tudorache, "Electromagnetic levitation of solid and molten metals," Journal of Applied Physics, Vol. 21, No. 4, 581-590, 2002.

12. Yin, W., A. J. Peyton, and S. J. Dickinson, "Simultaneous measurement of distance and thickness of a thin metal plate with an electromagnetic sensor using a simplified model," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 4, 1335-1338, 2004.
doi:10.1109/TIM.2004.830585

13. Betta, G., L. Ferrigno, M. Laracca, P. Burrascano, M. Ricci, and G. Silipigni, "An experimental comparison of multi-frequency and chirp excitations for eddy current testing on thin defects," Measurement, Vol. 63, 207-220, 2015.
doi:10.1016/j.measurement.2014.12.015

14. Tian, L. L., C. Yin, Y. H. Cheng, and L. Bai, "Successive approximation method for the measurement of thickness using pulsed eddy current," IEEE Instrumentation and Measurement Technology Conference, 848-852, 2015.

15. N. Ida, Y. Le Menach and T. Henneron, "High order surface impedance boundary conditions with the A-Φ formulation," Facta Universitatis (NIS), Vol. 24, 147-155, 2011.

16. Zaidi, H., L. Santandréa, G. Krebs, and Y. Le Bihan, "Modelling of 3D thin regions in magnetostatic NDT using overlapping elements in dual formulations," PIERS Proceedings, 166-170, Marrakesh, Morocco, Mar. 20–23, 2011.

17. Ruehli, A., G. Antonini, and L. Jiang, Circuit Oriented Electromagnetic Modelling Using the PEEC Techniques, Wiley-Blackwell, 2017.
doi:10.1002/9781119078388

18. Ruehli, A. E., "Inductance calculation in a complex integrated circuit environment," IBM Journal Research Development, 470-480, 1972.
doi:10.1147/rd.165.0470

19. Hoer, C. and C. Love, "Exact inductance equations for rectangular conductors whith applications to more complicated geometries," Journal of Research of the National Bureau of Standards-C. Engineering and Instrumentation, Vol. 69, No. 2, 127-137, 1965.
doi:10.6028/jres.069C.016

20. Paul, C. R., Inductance Loop and Partial, John Wiley Sons, Inc., 2010.

21. Antonini, G., A. Orlandi, and C. R. Paul, "Internal impedance of conductors of rectangular cross section," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, 979-985, 1999.
doi:10.1109/22.775429

22. Zhong, G. and C. K. Koh, "Exact closed-form formula for partial mutual inductances of rectangular conductors," IEEE Transactions on Magnetics, Vol. 50, No. 1, 1349-1352, 2003.

23. Wollenberg, C. and A. Gurisch, "Analysis of 3-D interconnect structures with PEEC using SPICE," IEEE Trans. on Electromag. Compat., Vol. 41, No. 4, 412-417, 1999.
doi:10.1109/15.809841

24. Cao, Y., Z. F. Li, J. F. Mao, and J. F. Mao, "A PEEC with a new capacitance model for circuit simulation of interconnects and packaging structures," IEEE Trans. on Microwave Theory and Tech., Vol. 48, No. 9, 1435-1442, 2000.
doi:10.1109/22.868992

25. Gope, D., A. Ruehli, and V. Jandhyala, "Solving low-frequency EM-CKT problems using the PEEC Method," IEEE Trans. on Adv. Packaging, Vol. 30, No. 2, 313-320, 2007.
doi:10.1109/TADVP.2007.896000

26. Antonini, G., "PEEC capacitance extraction of 3-D interconnects," IET Science, Measurement and Technology, Vol. 1, No. 4, 201-209, 2007.
doi:10.1049/iet-smt:20050047

27. Le-Duc, T., O. Chadebec, J. M. Guichon, and G. Meunier, "Coupling between partial element equivalent circuit method and an integro-differential approach for solving electromagnetics problems," IET Science, Measurement and Technology, Vol. 6, No. 5, 394-397, 2012.
doi:10.1049/iet-smt.2011.0121

28. Kalimov, A., F. Kmos, B. Langenbeck, and G. Moritz, "Dynamic processes in laminated magnets: Simulation and comparison with experimental results," IEEE Trans. Appl. Supercond., Vol. 12, No. 1, 98-10, 2002.
doi:10.1109/TASC.2002.1018360

29. Salon, S. J., B. Mathewson, and S. Uda, "An intergro-differential approach to eddy currents in thin plates," IEEE Transactions on Magnetics, Vol. 19, No. 6, 2405-2408, 1983.
doi:10.1109/TMAG.1983.1062874

30. Tsuboi, H., M. Tanaka, and T. Misaki, "Eddy current and deflection analyses of a thin plate in time-changing magnetic field," IEEE Transactions on Magnetics, Vol. 26, No. 5, 1647-1649, 1990.
doi:10.1109/20.104476

31. Demenko, A. and J. Sykulski, "On the equivalence of finite difference and edge element formulations in magnetic field analysis using vector potential," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33, No. 1-2, 47-55, 2014.

32. Huang, J., W. Liao, and Z. Li, "A multi-block finite difference method for seismic wave equation in auxiliary coordinate system with irregular fluid-solid interface," Engineering Computations, Vol. 35, No. 1, 334-362, 2018.
doi:10.1108/EC-12-2016-0438

33. Chapwanya, M., R. Dozva, and G. Gift Muchatibaya, "A nonstandard finite difference technique for singular Lane-Emden type equations," Engineering Computations, Vol. 36, No. 5, 1566-1578, 2019.
doi:10.1108/EC-08-2018-0344

34. Mawlood, M., S. Basri, W. Asrar, A. Omar, A. Mokhta, and M. Ahmad, "Solution of Navier-Stokes equations by fourth-order compact schemes and AUSM flux splitting," International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 16, No. 1, 107-120, 2006.
doi:10.1108/09615530610636982

35. Momeni, K., Y. Ji, Y. Wang, S. Paul, S. Neshani, D. E. Yilmaz, Y. K. Shin, D. Zhang, J.-W. Jiang, H. S. Park, S. Sinnott, A. van Duin, V. Crespi, and L.-Q. Chen, "Multiscale computational understanding and growth of 2D materials: A review," NPJ Computational Materials, Vol. 6, No. 22, 2020.

36. Aissaoui, M., H. Allag, and J. P. Yonnet, "Mutual inductance and interaction calculation between conductor or coil of rectangular cross section and parallelepiped permanent magnet," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-4, 2014.
doi:10.1109/TMAG.2014.2324283

37. Aomar, L., H. Allag, M. Feliachi, and J. P. Yonnet, "3-D integral approach for calculating mutual interactions between polygon-shaped massive coils," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-2, 2017.
doi:10.1109/TMAG.2017.2706022