Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-03-09

The Design and Implementation of an RF Energy Harvesting System Using Dynamic Pi-Matching, Enabling Low-Power Device Activation and Energy Storage

By Beragama Vithanage Sandaru Suwan, Wijesekara Withana Gamage Vidula, Wanniarachchi Kankanamge Indika Lasantha Wanniarachchi, Chandima Helakumara Manathunga, and Sasani Jayawardhana
Progress In Electromagnetics Research C, Vol. 119, 49-63, 2022
doi:10.2528/PIERC21121802

Abstract

Radio-frequency electromagnetic waves can be harnessed to produce an alternative source of energy to replace batteries in many low-power device applications. An efficient radio frequency (RF) energy harvesting circuit was designed and constructed using a dynamic Pi-matching network in order to convert frequency-modulated electromagnetic waves in the range of 88-108 MHz to direct current through a 3-step process. The circuit consists of a 50 Ω copper plate dipole antenna, a Pi impedance matching network, and a five-stage voltage doubler circuit. These three modules are connected through SubMiniature version A (SMA) connectors for convenient assembly. The dynamic Pi matching technique for RF energy harvesting is theoretically explained and simulated in the Advance Design System software environment. The experimental values obtained in this proposed work are in good agreement with the simulations. The harvesting system is capable of producing up to 14.3 V direct current voltage across a 100 kΩ load in field tests carried out at a displacement of 760 m from a transmission tower. At 6.7 km from the tower, a DC value of 61.5 mV was still obtainable at the ground level. The direct-current power that was generated through the energy harvesting was applied for the demonstration of three tasks with satisfactory results: illuminating a light-emitting diode, energy storage in a Panasonic VL2020 rechargeable battery, and activation of a TMP20AIDCKT temperature sensor in an urban area which enabled low power device activation and energy storage.

Citation


Beragama Vithanage Sandaru Suwan, Wijesekara Withana Gamage Vidula, Wanniarachchi Kankanamge Indika Lasantha Wanniarachchi, Chandima Helakumara Manathunga, and Sasani Jayawardhana, "The Design and Implementation of an RF Energy Harvesting System Using Dynamic Pi-Matching, Enabling Low-Power Device Activation and Energy Storage," Progress In Electromagnetics Research C, Vol. 119, 49-63, 2022.
doi:10.2528/PIERC21121802
http://www.jpier.org/PIERC/pier.php?paper=21121802

References


    1. Geran, F., N. Mirzababaee, and S. Mohanna, "RF power harvester using a broadband monopole antenna and a quad-band rectifier," International Journal of Industrial Electronics, Control and Optimization, 2020.

    2. Mouapi, A., N. Hakem, and N. Kandil, "Design of 900 MHz radio frequency energy harvesting circuit for the internet of things applications," 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-6, IEEE, June 2020.

    3. Md. Din, N., C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
    doi:10.2528/PIER12072002

    4. Moghaddam, N. A., A. Maleki, M. Shirichian, and N. S. Panah, "RF energy harvesting system and circuits for charging of wireless devices using spectrum sensing," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 431-436, IEEE, December 2017.
    doi:10.1109/ICECS.2017.8292044

    5. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900 MHz band," 2011 National Conference on Communications (NCC), 1-5, IEEE, January 2011.

    6. Gunathilaka, W. M. D. R., H. G. C. P. Dinesh, G. G. C. M. Gunasekara, K. M. M. W. N. B. Narampanawe, and J. V. Wijayakulasooriya, "Ambient radio frequency energy harvesting," 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 1-5, IEEE, August 2012.

    7. Arrawatia, M., M. S. Baghini, and G. Kumar, "Differential microstrip antenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 1581-1588, 2015.
    doi:10.1109/TAP.2015.2399939

    8. Colaiuda, D., I. Ulisse, and G. Ferri, "Rectifiers' design and optimization for a dual-channel RF energy harvester," Journal of Low Power Electronics and Applications, Vol. 10, No. 1, 11, 2020.
    doi:10.3390/jlpea10020011

    9. Farinholt, K. M., G. Park, and C. R. Farrar, "RF energy transmission for a low-power wireless impedance sensor node," IEEE Sensors Journal, Vol. 9, No. 7, 793-800, 2009.
    doi:10.1109/JSEN.2009.2022536

    10. Chang, Y., P. Zhang, and L. Wang, "Highly efficient differential rectenna for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2662-2668, 2019.
    doi:10.1002/mop.31945

    11. Chiam, T. M., L. C. Ong, M. F. Karim, and Y. X. Guo, "5.8 GHz circularly polarized rectennas using schottky diode and LTC5535 rectifier for RF energy harvesting," 2009 Asia Pacific Microwave Conference, 32-35, IEEE, December 2009.
    doi:10.1109/APMC.2009.5385503

    12. Pham, B. L. and A. V. Pham, "Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, IEEE, June 2013.

    13. Elsheakh, D., M. Farouk, H. Elsadek, and H. Ghali, "Quad-band rectenna for RF energy harvesting system," Journal of Electromagnetic Analysis and Applications, Vol. 12, No. 3, 57-70, 2020.

    14. Kumar, H., M. Arrawatia, and G. Kumar, "Broadband planar log-periodic dipole array antenna based RF-energy harvesting system," IETE Journal of Research, Vol. 65, No. 1, 39-43, 2019.
    doi:10.1080/03772063.2017.1385427

    15. Ungan, T. and L. M. Reindl, "Harvesting low ambient RF-sources for autonomous measurement systems," 2008 IEEE Instrumentation and Measurement Technology Conference, 62-65, IEEE, May 2008.
    doi:10.1109/IMTC.2008.4547005

    16. Le, T., K. Mayaram, and T. Fiez, "Efficient far-field radio frequency energy harvesting for passively powered sensor networks," IEEE Journal of Solid-State Circuits, Vol. 43, No. 3, 1287-1302, 2008.
    doi:10.1109/JSSC.2008.920318

    17. Jabbar, H., Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 247-253, 2010.
    doi:10.1109/TCE.2010.5439152

    18. Scorcioni, S., L. Larcher, and A. Bertacchini, "Optimized CMOS RF-DC converters for remote wireless powering of RFID applications," 2012 IEEE International Conference on RFID (RFID), 47-53, IEEE, April 2012.

    19. Gao, H., M. K. Matters-Kamrnerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, and P. Baltus, "A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 403-406, IEEE, June 2013.
    doi:10.1109/RFIC.2013.6569616

    20. Cepeda Rubio, M. F. J., G. D. Guerrero López, F. Valdés Perezgasga, F. Flores García, A. Vera Hernández, and L. Leija Salas, "Computer modeling for microwave ablation in breast cancer using a coaxial slot antenna," International Journal of Thermophysics, Vol. 36, No. 10-11, 2687-2704, 2015.
    doi:10.1007/s10765-015-1931-2

    21. Gas, P. and J. Czosnowski, "Calculation of the coaxial-slot antenna characteristics used for the interstitial microwave hyperthermia treatment," Przeglad Elektrotechniczny, Vol. 90, No. 3, 176-178, 2014.

    22. Gas, P., "Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis," Biocybernetics and Biomedical Engineering, Vol. 37, No. 1, 78-93, 2017.
    doi:10.1016/j.bbe.2016.10.001

    23. Bertram, J. M., D. Yang, M. C. Converse, J. G. Webster, and D. M. Mahvi, "Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model," Biomedical Engineering Online, Vol. 5, No. 1, 1-9, 2006.
    doi:10.1186/1475-925X-5-15

    24. Bird, T. S., "Definition and misuse of return loss [report of the transactions editor-in-chief]," IEEE Antennas and Propagation Magazine, Vol. 51, No. 1, 166-167, 2009.
    doi:10.1109/MAP.2009.5162049

    25. Khalid, F., W. Saeed, N. Shoaib, M. U. Khan, and H. M. Cheema, "Quad-band 3D rectenna array for ambient RF energy harvesting," International Journal of Antennas and Propagation, 2020, 2020.

    26. Park, J. K., Y. H. Cho, J. M. Kim, S. H. Kim, J. S. Yoo, W. Y. Lee, I. Y. Lee, J. S. Kim, and D. H. Kim, "FM radio chip antenna using magneto-dielectric," 2007 Asia-Pacific Microwave Conference, 1-3, IEEE, December 2007.

    27. Borja, C., J. Anguera, C. Puente, and J. Vergés, "How much can be reduced the internal FM antenna of mobiles phones?," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, IEEE, April 2010.

    28. Bowick, C., C. Ajluni, and J. Blyler, RF Circuit Design, Elsevier, Amsterdam, 2008.

    29. Yan, H., J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, "An integration scheme for RF power harvesting," Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, Vol. 2005, 64-66, November 2005.

    30. Devi, K. K. A., N. M. Din, and C. K. Chakrabarthy, "Optimization of the voltage doubler stages in an RF-DC convertor module for energy harvesting," Circuits and Systems, Vol. 3, No. 3, Jul. 2012.

    31., , Ti.com. 2021. [online] Available at: https://www.ti.com/lit/ds/symlink/tmp20.pdf?ts=161210780-8539&ref url=https%253A%252F%252Fwww.google.com%252F [Accessed 26 July 2020].