Vol. 15
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-06-10
Performance Enhancement of Tri-Band Monopole Antenna for WLAN / WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 15, 61-68, 2010
Abstract
A novel tri-band monopole antenna applied to WLAN / WiMAX applications is proposed in this paper. The antenna comprises of two semicircles: one is fed by a microstrip line, and the other is shorted to the ground. By incorporating L-shaped strips, good filter as tri-band performance is achieved. The proposed antenna shows a good multi-band property to satisfy the requirement of WLAN in the 2.4/5.2/5.8 GHz bands and WiMAX in the 2.5/3.5/5.5 GHz bands. In addition, a near omni-directional radiation characteristic is also obtained. Experimental data show that the antenna can provide three separate impedance bandwidths of 400 MHz (centered at 2.6 GHz), 400 MHz (centered at 3.4 GHz) and 1100 MHz (centered at 5.3 GHz) with two fine notched bands at the undesired bandwidths.
Citation
Le-Hu Wen, Ying-Zeng Yin, Zhen-Yang Liu, Dan Xi, Min Zhang, and Yan Wang, "Performance Enhancement of Tri-Band Monopole Antenna for WLAN / WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 15, 61-68, 2010.
doi:10.2528/PIERL10050606
References

1. Liu, C.-C. Song, S.-H. Chung, J.-L. Jaw, "Strip-loaded CPW-fed pentagonal antenna for GPS/WiMAX/WLAN applications," Microwave Opt. Technol. Lett., Vol. 51, 48-52, 2009.
doi:10.1002/mop.23979

2. Huang, J.-F., M.-T. Wu, and J.-Y. Wen, "A compact triple-band antenna design for UMTS, WLAN and WiMAX applications," Microwave Opt. Technol. Lett., Vol. 51, 2207-2212, 2009.
doi:10.1002/mop.24522

3. Lee, S.-Y. and C.-C. Yu, "A novel wideband asymmetric hybrid antenna for WLAN/WiMAX application," Microwave Opt. Technol. Lett., Vol. 51, 1055-1057, 2009.
doi:10.1002/mop.24215

4. Lee, Y.-C. and J.-S. Sun, "Compact printed slot antennas for wireless dual and multi-band operations," Progress In Electromagnetics Research, Vol. 88, 289-305, 2008.
doi:10.2528/PIER08111902

5. Gai, S., Y.-C. Jiao, Y.-B. Yang, C.-Y. Li, and J.-G. Gong, "Design of a novel microstrip-fed dual-band slot antenna for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 13, 75-81, 2010.
doi:10.2528/PIERL09111103

6. Kang, L., Y.-Z. Yin, S.-T. Fan, and S.-J. Wei, "A novel rectangular slot antenna with embedded self-similar T-shaped strips for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 15, 19-26, 2010.
doi:10.2528/PIERL10040908

7. Ren, W., "Compact dual-band slot antenna for 2.4/5 GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406

8. Raj, R. K., M. Joseph, B. Paul, and P. Mohanan, "Compact planar multiband antenna for GPS, DCS, 2.4/5.8 GHz WLAN applications," Electron. Lett., Vol. 41, 48-49, 2005.
doi:10.1049/el:20058035

9. Liu, W.-C., C.-C. Song, S.-H. Chung, and J.-L. Jaw, "Strip-loaded CPW-fed pentagonal antenna for GPS/WiMAX/WLAN applications," Microwave Opt. Technol. Lett., Vol. 51, 48-52, 2009.
doi:10.1002/mop.23979

10. George Thomas, K. and M. Sreenivasan, "A novel triple band printed antenna for WLAN/WiMAX applications," Microwave Opt. Technol. Lett., Vol. 51, 2481-2485, 2009.
doi:10.1002/mop.24650

11. Chen, W.-S. and Y.-H. Yu, "Compact design of T-type monopole antenna with asymmetrical ground plane for WLAN/WiMAX applications," Microwave Opt. Technol. Lett., Vol. 50, 515-519, 2008.
doi:10.1002/mop.23120

12. Mahatthanajatuphat, C., S. Saleekaw, and P. Akkaraekthalin, "A rhombic patch monopole antenna with modified minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," geometry for UMTS, WLAN, and mobile WiMAX application, Vol. 89, 57-74, 2009.

13. Li, X., L. Yang, S.-X. Gong, and Y.-J. Yang, "Bidirectional high gain antenna for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 6, 99-106, 2009.
doi:10.2528/PIERL08122601

14. Song, Y., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Multiband CPW-fed triangle-shaped monopole antenna for wireless applications," Progress In Electromagnetic Research, Vol. 70, 329-336, 2007.
doi:10.2528/PIER07020201