Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-09-01

A Closed Algebra of Clebsch Forms Derived from Whittaker Super-Potentials and Applications in Electromagnetic Research.

By Theophanes E. Raptis
Progress In Electromagnetics Research Letters, Vol. 42, 97-107, 2013
doi:10.2528/PIERL13071904

Abstract

A type of closed exterior algebra in R3 under the cross product is revealed to hold between differential forms from the three Whittaker scalar potentials, associated with the fields of a moving electron. A special algebraic structure is revealed in the context of Clebsch reparametrization of these scalars, and a special prescription for the construction of permutation invariant electromagnetic fields is given as well as a superposition with parallel electric and magnetic components.

Citation


Theophanes E. Raptis, "A Closed Algebra of Clebsch Forms Derived from Whittaker Super-Potentials and Applications in Electromagnetic Research.," Progress In Electromagnetics Research Letters, Vol. 42, 97-107, 2013.
doi:10.2528/PIERL13071904
http://www.jpier.org/PIERL/pier.php?paper=13071904

References


    1. Whittaker, E. T., "On an expression of the electromagnetic field due to electrons by means of two scalar potential functions," Proc. London Math. Soc., Vol. 1, 367-372, 1904.
    doi:10.1112/plms/s2-1.1.367

    2. Bateman, H., The solution of partial differential equations by means of definite integrals, Proc. London Math. Soc., Vol. 1, No. 1, 451-458, 1904.

    3. Ruse, H. S., "The geometry of the electromagnetic six-vector, the electromagnetic energy and the Hertzian tensor," C. R. Congr. Internat. Math., Vol. 2, 232, 1936.

    4. Ruse, H. S., "On Whittaker's electromagnetic scalar potentials," Quart. J. Math. Soc., Vol. 8, No. 1, 148-160, 1937.
    doi:10.1093/qmath/os-8.1.148

    5. Kawaguchi, H. and S. Murata, "Hertzian tensor potential which results in Lienard-Wiechert potential," J. Phys. Soc. Jap., Vol. 58, No. 3, 848-855, 1989.
    doi:10.1143/JPSJ.58.848

    6. Kawaguchi, H. and T. Honma, "On the super-potentials for Lienard-Wiechert potentials in far fields," J. Phys. A: Math. Gen., Vol. 25, 4437, 1992.
    doi:10.1088/0305-4470/25/16/019

    7. Kawaguchi, H. and T. Honma, "Superpotentials of Lienard-Wiechert potentials in far fields: The relativistic case," J. Phys. A: Math. Gen., Vol. 26, No. 17, 4431, 1993.
    doi:10.1088/0305-4470/26/17/047

    8. Kawaguchi, H. and T. Honma, "On a double fiber bundle structure of the Lienard-Wiechert superpotentials," J. Tech. Phys., Vol. 35, No. 1-2, 61-65, 1994.

    9. Kawaguchi, H. and T. Honma, "On the electrodynamics of the Lienard-Wiechert superpotentials," J. Phys. A: Math. Gen., Vol. 28, No. 2, 469, 1995.
    doi:10.1088/0305-4470/28/2/021

    10. Marmanis, H., Analogy between the electromagnetic and hydrodynamic equations: Applications to turbulence, Ph.D.Thesis, Brown University, 1999.

    11. Martins, A. A. and M. J. Pinheiro, "Fluidic electrodynamics: Approach to electromagnetic propulsion," Phys. Fluids, Vol. 21, 097103, 2001.

    12. Bateman, H., Partial Differential Equations of Mathematical Physics, Cambridge Univ. Press, 1959.

    13. Stern, D. P., "Euler potentials," Am. J. Phys., Vol. 38, No. 4, 494-501, 1970.
    doi:10.1119/1.1976373

    14. Asanov, G. S., "Clebsch representations and energy-momentum of classical electromagnetic and gravitational fields," Found. Phys., Vol. 10, No. 11-12, 855-863, 1980.
    doi:10.1007/BF00708684

    15. Marsden, J. and A. Weinstein, "Coadjoint orbits, vortices and Clebsch variables for incompressible fluids," Physica D, Vol. 7, 305-323, 1983.
    doi:10.1016/0167-2789(83)90134-3

    16. Ranada, A. F., "Interplay of topology and quantization: Topological energy quantization in a cavity," Phys. Lett. A, Vol. 310, 434, 2003.
    doi:10.1016/S0375-9601(03)00443-2

    17. Uehara, K., et al., "Non-transverse electromagnetic fields with parallel electric and magnetic fields," J. Phys. Soc. Jap., Vol. 58, No. 10, 3570-3575, 1989.
    doi:10.1143/JPSJ.58.3570

    18. Shimoda, K., et al., "Electromagnetic plane waves with parallel electric and magnetic fields E||B in free space," Am. J. Phys., Vol. 58, No. 4, 394, 1990.
    doi:10.1119/1.16482

    19. Gray, J. E., "Electromagnetic waves with E parallel to B," J. Phys. A: Math. Gen., Vol. 25, No. 20, 5373, 1992.
    doi:10.1088/0305-4470/25/20/017