Vol. 106
Latest Volume
All Volumes
PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-08-26
A Circular Quasi-Isotropic Dielectric Resonator Antenna for Bluetooth
By
Progress In Electromagnetics Research Letters, Vol. 106, 49-55, 2022
Abstract
A quasi-isotropic dielectric resonator antenna (DRA) is proposed under the 5.8 GHz industrial, scientific, and medical (ISM) standard. The antenna consists of a hollow cylinder and and a coaxial probe which feeds electricity. By digging a large hole in the cylindrical dielectric resonator, the HEM11δ mode and the TM10 mode of the floor are excited, the two modes are orthogonal, and the radiation characteristics are equivalent to orthogonal magnetic dipoles and electric dipoles, so as to achieve quasi-isotropic radiation characteristics. The large hole can also reserve space for other electronic components for Bluetooth devices with small space, such as capsule endoscope, mobile phone and Bluetooth headset. The characteristics of the antenna are simulated and analyzed by HFSS, and the optimized antenna structure parameters are obtained. The antenna is made for experimental testing. The measured results demonstrate that the antenna exhibits a good -10 dB-impedance bandwidth at 5.38-5.68 GHz and has the characteristics of miniaturization, quasi-isotropy, and high gain.
Citation
Bo Chen, Yueyuan Zhang, Beibei Xing, and Dan Tang, "A Circular Quasi-Isotropic Dielectric Resonator Antenna for Bluetooth," Progress In Electromagnetics Research Letters, Vol. 106, 49-55, 2022.
doi:10.2528/PIERL22042002
http://www.jpier.org/PIERL/pier.php?paper=22042002
References

1. Long, S., M. McAllister, and L. Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Transactions on Antennas & Propagation, Vol. 31, 406-412, 1983.
doi:10.1109/TAP.1983.1143080

2. Luvisotto, M., Z. Pang, and D. Dzung, "High-performance wireless networks for industrial control applications: new targets and feasibility," Proceedings of the IEEE, Vol. 107, 1074-1093, 2019.
doi:10.1109/JPROC.2019.2898993

3. Park, P., "Markov chain model of fault-tolerant wireless networked control systems," Wireless Networks, Vol. 25, 2291-2303, 2019.
doi:10.1007/s11276-017-1657-0

4. Park, P., S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, "Wireless network design for control systems: A survey," IEEE Communications Surveys & Tutorials, Vol. 20, 978-1013, 2018.
doi:10.1109/COMST.2017.2780114

5. Lin, W. and R. W. Ziolkowski, "Wirelessly powered light and temperature sensors facilitated by electrically small omni-directional and Huygens dipole antennas," Sensors, Vol. 19, 1998, 2019.
doi:10.3390/s19091998

6. Fairouz, M. and M. A. Saed, "A complete system of wireless power transfer using a circularly polarized retrodirective array," Journal of Electromagnetic Engineering and Science, Vol. 20, 139-144, 2020.
doi:10.26866/jees.2020.20.2.139

7. Radha, S. M., M. Jung, P. Park, and I.-J. Yoon, "Design of an electrically small, planar quasi- isotropic antenna for enhancement of wireless link reliability under NLOS channels," Applied Sciences, Vol. 10, 6204, 2020.
doi:10.3390/app10186204

8. Mathis, H. F., "A short proof that an isotropic antenna is impossible," Proc. IRE, Vol. 8, 970, 1951.

9. Xing, B., Y. Zhang, H. Zou, and Z. Liu, "A conformal quasi-isotropic dielectric resonator antenna for wireless capsule endoscope application," Progress In Electromagnetics Research M, Vol. 99, 211-221, 2021.
doi:10.2528/PIERM20091901

10. Pan, Y. M., K. W. Leung, and K. Lu, "Compact quasi-isotropic dielectric resonator antenna with small ground plane," IEEE Transactions on Antennas & Propagation, Vol. 62, 577-585, 2014.
doi:10.1109/TAP.2013.2292082

11. Hu, P. F., Y. M. Pan, and X. Y. Zhang, "A compact quasi-isotropic dielectric resonator antenna with filtering response," IEEE Transactions on Antennas & Propagation, Vol. 67, 1294-1299, 2018.
doi:10.1109/TAP.2018.2883611

12. Masaharu, T., "Antennas for wireless power transmission of capsule endoscope," 2018 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (IWEM), 1-2, 2018.

13. Li, Y., Y. X. Guo, and S. Xiao, "Orientation insensitive antenna with polarization diversity for wireless capsule endoscope system," IEEE Transactions on Antennas & Propagation, Vol. 65, 3738-3743, 2017.
doi:10.1109/TAP.2017.2705023