Vol. 3
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-07-07
Frequency Estimation by Pilot Set Partitioning for OFDM Systems with Multiple Transmit Antennas
By
Progress In Electromagnetics Research M, Vol. 3, 193-204, 2008
Abstract
Cyclic delay diversity (CDD) is a simple approach to increase the frequency selectivity of the channel in an orthogonal frequency division multiplexing (OFDM) based transmission scheme. However, CDD can cause serious degradation in the performance of channel and frequency estimation in the frequency domain. This paper suggests a post-FFT frequency estimation scheme suitable for arbitrary cyclic delays in the CDD-OFDM system. By partitioning uncorrelated pilot subcarriers into subsets to be flat, and performing frequency estimation for each pilot subset, a robust integer frequency offset estimation scheme is derived.
Citation
Eu-Suk Shim Young-Hwan You Kyung-Taek Lee Ki-Won Kwon , "Frequency Estimation by Pilot Set Partitioning for OFDM Systems with Multiple Transmit Antennas," Progress In Electromagnetics Research M, Vol. 3, 193-204, 2008.
doi:10.2528/PIERM08061201
http://www.jpier.org/PIERM/pier.php?paper=08061201
References

1. IEEE Std 802.11a, "Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed physical layer in the 5 GHz band,", December 1999.
doi:10.1163/156939307780749138

2. ECMA International, Standard ECMA-368, "High rate ultra wideband PHY and MAC standard,", December 2007.

3. Liu, W. C. and C. F. Hsu, "CPW-FED notched monopole antenna for UMTS/IMT-2000/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 841-851, 2007.
doi:10.1163/156939307783152939

4. Shams, K. M. and M. Ali, "A planar inductively coupled bow-tie slot antenna for WLAN application," Journal of Electromagnetic Journal of Electromagnetic, Vol. 20, No. 7, 861-871, 2006.
doi:10.1163/156939307783134290

5. Fu, F., L. Yan, K. Huang, and J. Dong, "Design and implement of a CPW-FED meander monopole antenna with V-shape notched a CPW-FED meander monopole antenna with V-shape notched," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2129-2136, 2007.
doi:10.1163/156939307783134344

6. Zhang, G.-M., J.-S. Hong, B.-Z. Wang, Q.-Y. Qin, B. He, and D.-M. Wan, "A novel planar monopole antenna with an H-shaped ground plane for dual-band WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2229-2239, 2007.
doi:10.1163/156939307783134263

7. Qin, W., "A novel patch antenna with a T-shaped parastic strip A novel patch antenna with a T-shaped parastic strip for 2.4/5.8 GHZ WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2311-2320, 2007.

8. Peng, L. and C. Ruan, "A microstrip FED monopole patch antenna with three stubs for dual-band WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2359-2369, 2007.
doi:10.2528/PIERL07111810

9. IEEE Std P802.11n/D3.00, "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 4: Enhancements for higher throughput,", September 2007.

10. IEEE Std. P802.16e/D12, "Air interface for fixed and mobile broadband wireless access systems,", October 2005.
doi:10.1163/156939307780667265

11. Min, K.-S., M.-S. Kim, C.-K. Park, and M. D. Vu, "Design for PCS antenna based on Wibro-MIMO," Progress In Electromagnetics Research Letters, Vol. 1, 77-83, 2008.
doi:10.2528/PIERB07121903

12. Koo, B.-W., M.-S. Baek, and H.-K. Song, "Multiple antenna transmission technique for UWB system," Progress In Electromagnetics Progress In Electromagnetics, Vol. 2, 177-185, 2008.

13. Abouda, A. A., H. M. El-Sallabi, and L. Vuokko, "Spatial smoothing effects on Kroneker MIMO channel model in urban microcells," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 681-696, 2007.
doi:10.1109/TBC.2006.884738

14. Noori, N. and H. Oraizi, "Evaluation of MIMO channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.
doi:10.1049/ip-com:20040962

15. Dammann, A. and S. Kaiser, "Standard conformable antenna diversity techniques for OFDM and its application to the DVB-T system," Proc. of GLOBCOM’01, 3100-3105, November 2001.
doi:10.1109/WSA.2004.1407642

16. Zhang, Y., J. Cosmas, M. Bard, and Y.-H. Song, "Diversity gain for DVB-H by using transmitter/receiver cyclic delay diversity," IEEE Trans. Broadcasting, Vol. 52, No. 4, 464-474, December 2006.

17. Allen, B., F. Said, G. Bauch, G. Auer, and A. H. Aghvami, "Spectrally efficient transmit diversity scheme for differentially modulated multicarrier transmissions," IEE Proceedings Communications, Vol. 152, No. 4, 457-462, August 2005.
doi:10.1109/TWC.2004.825350

18. Bauch, G. and J. S. Malik, "Orthogonal frequency division multiple access with cyclic delay diversity," Proc. of ITG Workshop on Smart Antennas, 17-24, March 2004.
doi:10.1109/JPROC.2003.821912

19. Auer, A., "Channel estimation for OFDM with cyclic delay diversity," Proc. of PIMRC’04, 1792-1796, September 2004.
doi:10.1109/JPROC.2003.821912

20. Lei, J. and T.-S. Ng, "A consistent OFDM carrier frequency offset estimator based on distinctively spaced pilot tones," IEEE Trans. Wireless Commun., Vol. 3, No. 2, 588-599, March 2004.

21. Stuber, G. L., J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram, and T. G. Pratt, "Broadband MIMO-OFDM wireless communications," Proceeding of the IEEE, Vol. 92, No. 2, 271-294, Feburary 2004.

22., "Petition for rulemaking to the united states federal communications commisiion for in-band on-channel digital audio broadcasting,", USADR, October 1998.

23. Nogami, H. and T. Nagashima, "A frequency and timing period acquisition technique for OFDM systems," Proc. PIRMC’95, 1010-1015, September 1995.