Vol. 4

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-08-20

A Novel Design Approach for Dual-Band Electromagnetic Band-Gap Structure

By Li-Jing Zhang, Chang-Hong Liang, Le Liang, and Liang Chen
Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008
doi:10.2528/PIERM08071107

Abstract

A novel compact dual-band electromagnetic band-gap (EBG) structure is proposed in this paper. The major contribution to this dual-band design is using cascaded mushroom-like units which operate at different frequencies. The position of via is moved off the center of the metal patch to get a lower resonant frequency and the effects of the radius of via are considered at the same time. The method of suspended microstrip is utilized to measure the band-gap characteristics of the EBG structures. Several dual-band EBG structures are designed and compared. Results show that this novel cascaded structure offers additional flexibility in controlling the frequencies of the stopband over a wide range. The cascaded dualband EBG structure has potential application to dual-band antenna and circuit.

Citation


Li-Jing Zhang, Chang-Hong Liang, Le Liang, and Liang Chen, "A Novel Design Approach for Dual-Band Electromagnetic Band-Gap Structure," Progress In Electromagnetics Research M, Vol. 4, 81-91, 2008.
doi:10.2528/PIERM08071107
http://www.jpier.org/PIERM/pier.php?paper=08071107

References


    1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-imp edance electromagnetic surfaces with a forbid-den frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, 1999.
    doi:10.1109/22.798001

    2. Yan, D.-B., Q. Gao, Y.-Q. Fu, G.-H. Zhang, and N.-C. Yuan, "Novel improvement of broad band AMC structure," Chinese Journal of Radio Science, Vol. 20, 586-589, 2005.

    3. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structure ," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
    doi:10.2528/PIER07040801

    4. Fu, Y. and N. Yuan, "Accurate analysis of electromagnetic bandgap materials using moment methods," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 2005.
    doi:10.1163/1569393053305026

    5. Li, B., L. LI, and C.-H. Liang, "The rectangular waveguide board wall slot array antenna with EBG structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 2005.

    6. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "nhancemen t of printed dipole antennas characteristics using semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 2006.
    doi:10.1163/156939306776930330

    7. Pirhadi, A., "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer ," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
    doi:10.2528/PIER07010201

    8. Guida, G., "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
    doi:10.2528/PIER02010801

    9. Zheng, L. G. and W. X. Zhang, "Study on bandwidth of 2-D dielectric PBG material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
    doi:10.2528/PIER02010804

    10. Tarot, A.-C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic PBG structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
    doi:10.2528/PIER02010806

    11. Yao, Y., X. Wang, and Z. H. Feng, A novel dual-band compact electromagnetic band-gap (EBG) structure and its application in multi-antenna, IEEE Antennas and Propagation Society International Symposium, 2006.

    12. Bao, X. L. and M. J. Ammann, Design of compact multiband EBG structure, European Conference on Antennas and Propagation, 2007.

    13. Chen, G. Y., J. S. Sun, and K. L. Wu, "Dual-band 1-D PBG," IEEE TENCON 2007, 2007.

    14. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure ," Microwave Opt. Technol. Lett., Vol. 50, 2167-2170, 2008.
    doi:10.1002/mop.23598

    15. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 53, 183-190, 2005.
    doi:10.1109/TMTT.2004.839322

    16. Yang, N., Z.-N. Chen, Y.-Y. Wang, and M. Y. W. Chia, "A two-layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design ," Microwave Opt. Technol. Lett., Vol. 37, 62-64, 2003.
    doi:10.1002/mop.10825

    17. Horii, Y., A compact band elimination filter composed of a mushroom resonator embedded in a microstrip line substrate, 2005 Asian Pacific Microwave Conference, 2005.

    18. Lee, D. H., J. H. Kim, J. H. Jang, and W. S. Park, "Dual-frequency dual-polarization antenna of high isolation with embedded mushroom-like EBG cells," Microwave Opt. Technol. Lett., Vol. 49, 1764-1768, 2007.
    doi:10.1002/mop.22513

    19. Chen, X.-Q., X.-W. Shi, Y.-C. Guo, and M.-X. Xiao, "A novel dual band transmitter using microstrip defected ground structure," Progress In Electromagnetics Research, Vol. 83, 1-11, 2008.
    doi:10.2528/PIER08041503

    20. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens ," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
    doi:10.2528/PIER08041404

    21. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
    doi:10.2528/PIER08050101

    22. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
    doi:10.2528/PIER07040801

    23. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer ," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
    doi:10.2528/PIER07010201

    24. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meanderloop resonator and CSRR DGS ," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
    doi:10.2528/PIER07090301

    25. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects ," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
    doi:10.2528/PIER07121002

    26. Yuan, H.-W., S.-X. Gong, X. Wang, and W.-T.Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
    doi:10.2528/PIERB07102302

    27. Oraizi, H. and M. S. Esfahlan, "Miniaturization of Wilkinson power dividers by using defected ground structures," Progress In Electromagnetics Research Letters, Vol. 4, 113-120, 2008.
    doi:10.2528/PIERL08060701

    28. Abdalla, M. A. and Z. Hu, "On the study of left-handed anar waveguide coupler on Ferrite\R\Nsubstrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.
    doi:10.2528/PIERL07111808

    29. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
    doi:10.2528/PIER07072302

    30. Boutayeb, H., A.-C. Tarot, and K. Mahdjoubi, "Focusing characteristics of a metallic cylindrical electromagnetic band gap structure with defects," Progress In Electromagnetics Research, Vol. 66, 89-103, 2006.
    doi:10.2528/PIER06100504