Vol. 12
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-05-20
Investigation of Electromagnetic Shielding Rooms with Metal Cabinet and Aperture
By
Progress In Electromagnetics Research M, Vol. 12, 181-192, 2010
Abstract
In this paper, a fast and efficient method has been proposed to analyze the electromagnetic shielding rooms with electrical large sizes and arbitrary shapes. The ray-tracing method is used to predict the Shielding Effectiveness (SE) of the electromagnetic shielding rooms. The proposed method is based on speeding up the ray tracing algorithm. The performance of the proposed method is verified by a comprehensive example. The effect of additional metal cabinet in the shielding effectiveness of shielding room has been investigated. Also the position of it has been found optimally to produce a ``best" performance for the shielding room.
Citation
Sayed Razavi Mohammad Khalaj-Amirhosseini , "Investigation of Electromagnetic Shielding Rooms with Metal Cabinet and Aperture," Progress In Electromagnetics Research M, Vol. 12, 181-192, 2010.
doi:10.2528/PIERM10041002
http://www.jpier.org/PIERM/pier.php?paper=10041002
References

1. Kraft, C. H., "Modeling leakage through finite apertures with TLM," IEEE Int. Symp. Electomagn. Campat., 73-76, Chicago, IL, Aug. 1994.

2. Martin, T., M. Backstrom, and J. Loren, "Semi-empirical modeling of apertures for shielding effectiveness simulations," IEEE Trans. Electroman. Compat., Vol. 45, No. 2, 229-237, May 2003.
doi:10.1109/TEMC.2003.810818

3. Bunting, C. F. and S.-P. Yu, "Field penetration in a rectangular box using numerical techniques: An effort to obtain statistical shielding effectiveness," IEEE Trans. Electroman. Compat., Vol. 46, No. 2, 160-168, May 2004.
doi:10.1109/TEMC.2004.826876

4. Wallyn, W., D. De Zutter, and E. Laerman, "Fast shielding effectiveness prediction for realistic rectangular enclosures," IEEE Trans. Electomagn. Campat., Vol. 45, 639-643, Nov. 2003.

5. Marvin, A. C., J. F. Dawson, S. Ward, L. Dawson, J. Clegg, and A. Weissenfeld, "A proposed new definition and measurement of the shielding effect of equipment enclosures," IEEE Trans. Electomagn. Campat., Vol. 46, No. 3, 459-468, Aug. 2004.
doi:10.1109/TEMC.2004.831901

6. Ott, H. W., Noise Reduction Techniques in Electronic Systems, 2nd Edition, Wiley, New York, 1988.

7. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Trans. Electomagn. Campat., Vol. 40, No. 3, 240-247, Aug. 1998.
doi:10.1109/15.709422

8. Razavi, S. M. J. and M. Khalaj-Amirhosseini, Using double-layers walls for shielded enclosures, Microwave Conference Proceedings, APMC 2005. Asia-Pacific Conference Proceedings, Vol. 2, No. 4-7, Dec. 2005.

9. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimum design of electromagnetic shielding rooms with minimum usage of absorbing materials," International Journal of RF and Microwave Computer Aided Engineering, Vol. 20, No. 1, Jan. 2010.

10. Yang, C.-F., B.-C. Wu, and C.-J. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Trans. Antennas Propagat., Vol. 46, No. 6, 907-919, Jun. 1998.
doi:10.1109/8.686780

11. Kim, H. and H. Ling, "Electromagnetic scattering from an inhomogeneous object by ray tracing," IEEE Trans. Antennas Propagat., Vol. 40, 517-525, May 1992.
doi:10.1109/8.142626

12. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization of an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERB08062902

13. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

14. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIERB09122102