Vol. 18
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-05-17
Three Dimensional Electromagnetic Concentrators with Homogeneous Material Parameters
By
Progress In Electromagnetics Research M, Vol. 18, 119-130, 2011
Abstract
By means of a three-step linear optical transformation method, material parameters of a three-dimensional diamond-shaped electromagnetic concentrator composed of tetrahedral homogeneous blocks has been derived in this paper. The performance of the concentrator has been confirmed by full-wave simulation. The designed concentrator can operate in a wide bandwidth due to the line transformation. It represents an important progress towards the practical realization of the metamaterial-assisted concentrator.
Citation
Tinghua Li Ming Huang Jingjing Yang Shujuan Mu Yaozhong Lan , "Three Dimensional Electromagnetic Concentrators with Homogeneous Material Parameters," Progress In Electromagnetics Research M, Vol. 18, 119-130, 2011.
doi:10.2528/PIERM11040705
http://www.jpier.org/PIERM/pier.php?paper=11040705
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

3. Weder, R., "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor., Vol. 41, No. 6, 065207, 2008.

4. Weder, R., "The boundary conditions for point transformed electromagnetic invisibility cloaks," J. Phys. A: Math. Theor., Vol. 41, No. 41, 415401, 2008.

5. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, No. 5910, 110-112, 2009.
doi:10.1126/science.1166332

6. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949

7. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nature Communication, Vol. 1, 21, 2010.

8. Chen, H. Y., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, 387-396, 2010.
doi:10.1038/nmat2743

9. Lai, Y., H. Y. Chen, Z. Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, No. 9, 093901, 2009.

10. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705

11. Yang, C. F., M. Huang, J. Yang, Z. Xiao, and J. Peng, "An external cloak with arbitrary cross section based on complementary medium," Progress In Electromagnetics Research M, Vol. 10, 13-24, 2009.
doi:10.2528/PIERM09110514

12. Ma, H., S. B. Qu, Z. Xu, and J. F. Wang, "The open cloak," Appl. Phys. Lett., Vol. 94, 103501, 2009.

13. Yang, J. J., M. Huang, C. F. Yang, and J. Yu, "Reciprocal invisibility cloak based on complementary media," Eur. Phys. J. D,, Vol. 61, No. 3, 731-736, 2011.
doi:10.1140/epjd/e2010-10507-2

14. Wang, W., L. Lin, X. F. Yang, J. H. Cui, C. L. Du, and X. G. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt. Express, Vol. 16, No. 11, 8094-8105, 2008.
doi:10.1364/OE.16.008094

15. Chen, H. Y. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, No. 24, 241105, 2007.

16. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photon. Nanostruct. Fundam. Appl., Vol. 6, No. 1, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013

17. Lai, Y., J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, 253902, 2009.

18. Yang, C. F., J. J. Yang, M. Huang, J. H. Peng, and G. H. Cai, "Two-dimensional electromagnetic superscatterer with arbitrary geometries," Comput. Mater. Sci., Vol. 49, No. 4, 820-825, 2010.
doi:10.1016/j.commatsci.2010.06.028

19. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, No. 6, 063903, 2008.

20. Jiang, W. X., J. Y. Chin, and T. J. Cui, "Anisotropic metamaterial devices," Materialstoday, Vol. 12, No. 12, 26-33, 2009.

21. Kwon, D. H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, No. 1, 24-46, 2010.
doi:10.1109/MAP.2010.5466396

22. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett., Vol. 92, 264101, 2008.

23. Yang, J. J., M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, "Metamaterial electromagnetic concentrators with arbitrary geometries," Opt. Express, Vol. 17, No. 22, 19656-19661, 2009.
doi:10.1364/OE.17.019656

24. Yang, C. F., J. J. Yang, M. Huang, J. H. Peng, and W. W. Niu, "Electromagnetic concentrators with arbitrary geometries based on Laplace's equation," JOSA A, Vol. 27, No. 9, 1994-1998, 2010.
doi:10.1364/JOSAA.27.001994

25. Li, W., J. G. Guan, and W. Wang, "Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio," J. Phys. D: Appl. Phys., Vol. 44, 125401, 2011.

26. Wang, X. H., S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, "Broadband three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks," J. Phys. D: Appl. Phys., Vol. 43, 305501, 2010.

27. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, No. 21, 9794-9804, 2006.
doi:10.1364/OE.14.009794