Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-10-19
A Self-Controlled Maglev System
By
Progress In Electromagnetics Research M, Vol. 26, 187-203, 2012
Abstract
This paper presents a MAGLEV system in which the magnetic suspension is assured by the repulsion of permanent magnets both on the guideway and on the vehicle. Due to the induced currents on a aluminum sheet surrounding the magnets on the guideway, the system intrinsic instability is overcome. The detailed structure of the proposed system is described and the main results of the simulations by means a FE code are reported.
Citation
Francesca Di Puccio Antonino Musolino Rocco Rizzo Ernesto Tripodi , "A Self-Controlled Maglev System," Progress In Electromagnetics Research M, Vol. 26, 187-203, 2012.
doi:10.2528/PIERM12091009
http://www.jpier.org/PIERM/pier.php?paper=12091009
References

1. Lee, , H. W., K. C. Kim, and J. Lee, "Review of maglev train technologies ," IEEE Trans. Magn., Vol. 42, No. 7, 1917-1925, Jul. 2006.

2. Eastham, A. R. and W. F. Hayes, "Maglev systems development status," IEEE Aerosp. Electron. Syst. Mag., Vol. 3, No. 1, 21-30, Jan. 1988.
doi:10.1109/62.843

3. Gutberlet, H., "The German magnetic transportation program ," IEEE Trans. Magn., Vol. 10, No. 3, 417-420, Sep. 1974.
doi:10.1109/TMAG.1974.1058431

4. Meins, J., L. Miller, and W. J. Mayer, "The high speed Maglev transport system transrapid," IEEE Trans. Magn., Vol. 24, No. 2, 808-811, Mar. 1988.
doi:10.1109/20.11347

5. Ono, M., S. Koga, H. Ohtsuki, and , "Japan's superconducting maglev train," IEEE Trans. Instrum. Meas. Magazine, Vol. 5, No. 1, 9-15, Mar. 2002.
doi:10.1109/5289.988732

6. Tsuchiya, M. and H. Ohsaki, "Characteristics of electromagnetic force of EMS-type maglev vehicle using bulk superconductors," IEEE Trans. Magn., Vol. 36, No. 5, 3683-3685, Sep. 2000.
doi:10.1109/20.908940

7. Hull, J. R., "Attractive levitation for high-speed ground transport with large guideway clearance and alternating-gradient stabilization," IEEE Trans. Magn., Vol. 25, No. 5, 3272-3274, Sep. 1989.
doi:10.1109/20.42275

8. Bohn, G. and G. Steinmetz, "The electromagnetic levitation and guidance technology of the transrapid test facility Emsland," IEEE Trans. Magn., Vol. 20, No. 5, 1666-1671, Sep. 1984.
doi:10.1109/TMAG.1984.1063246

9. Wang, J., et al., "Guidance forces on high temperature superconducting Maglev test vehicle," IEEE Trans. Appl. Supercond., Vol. 13, No. 2, 2154-2156, Jun. 2003.
doi:10.1109/TASC.2003.813022

10. Wang, S., et al., "The man-loading high-temperature superconducting Maglev test vehicle," IEEE Trans. Appl. Supercond., Vol. 13, No. 2, 2134-2137, Jun. 2003.
doi:10.1109/TASC.2003.813017

11. Sasakawa, T. and N. Tagawa, "Reduction of magnetic field in vehicle of superconducting maglev train," IEEE Trans. Magn., Vol. 36, No. 5, 3676-3679, Sep. 2000.
doi:10.1109/20.908938

12. Di Majo, F. and G. Sciarrone, "The future of the very high speed transportations," CSST, CNR, Rome, 1987.

13. Ausserlechner, U., "Closed analytical formulae for multi-pole magnetic rings," Progress In Electromagnetics Research B, Vol. 38, 71-105, 2012.

14. Babic, S. and C. Akyel, "Magnetic force between inclined circular loops (Lorentz approach)," Progress In Electromagnetics Research B, Vol. 38, 333-349, 2012.

15. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetic Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401

16. Janssen, J. L. G., J. J. H. Paulides, and E. A. Lomonova, "Study of magnetic gravity compensator topologies using an abstraction in the analytical interaction equations," Progress In Electromagnetics Research, Vol. 128, 75-90, 2012.

17. Earnshaw, S., "On the nature of molecular forces which regulate the constitution of luminofefeorus ether," Trans. Comb. Phil. Soc., Vol. 7, 97-112, 1842.

18. Braunbek, W., "Freischwebende korper in elektishen und magnetishen feld," Z. Phisik, Vol. 112, 753-763, 1939.
doi:10.1007/BF01339979

19. Bassani, R., "Permanent magnetic levitation and stability," Proceedings of NATO Advanced Study Institute on Fundamentals of Tribology etc., 899-913, Kluwer Academic Publishers, 2000.

20. Bassani, R., E. Ciulli, F. Di Puccio, and A. Musolino, "Study of conic permanent magnet bearings," Meccanica, Vol. 36, No. 6, 745-754, 2001.
doi:10.1023/A:1016321525162

21. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.

22. Tozoni, O. V., "New stable magnetodynamic suspension system," IEEE Trans. Magn., Vol. 35, No. 2, 1047-1054, Mar. 1999.
doi:10.1109/20.748852

23. Paudel, N., S. Paul, and J. Z. Bird, "General 2-D transient eddy current force equations for a magnetic source moving above a conductive plate," Progress In Electromagnetics Research B, Vol. 43, 255-277, 2012.

24. Tokoro, H. and K. Uchida, "High energy product Nd-Fe-B sintered magnets produced by wet compacting process," IEEE Trans. Magn., Vol. 37, 2463-2466, Jul. 2001.

25. Matrosov, V. M., et al., "A new passive maglev system based on eddy current stabilization," IEEE Trans. Magn., Vol. 45, No. 3, 984-987, Mar. 2009.
doi:10.1109/TMAG.2009.2012533

26. EFFE, User manual, Bathwick Electrical Design Ltd,UK,Sep. 2009.

27. MAGNET, , http://www.infolytica.com/en/products/magnet/,2012.

28. Musolino, A. and R. Rizzo, "Numerical analysis of brush commutation in helical coil electromagnetic launchers," IET Science, Measurement and Technology, Vol. 5, No. 4, 147-154, Jul. 2011.
doi:10.1049/iet-smt.2010.0098

29. Musolino, A. and R. Rizzo, "Numerical modeling of helical launchers," IEEE Trans. Plasma Sci., Vol. 39, No. 3, 935-940, Mar. 2011.
doi:10.1109/TPS.2010.2102046

30. Barmada, S., et al., "Force and torque evaluation in hybrid FEM-MOM formulations," IEEE Trans. Magn., Vol. 37, No. 5, 3108-3111, Sep. 2001.
doi:10.1109/20.952554

31. Tripodi , E., et al., "Modeling of electromechanical devices by GPU-accelerated integral formulation," Int. J. Numer. Model., 1-21, Published online in Wiley Online Library(wileyonlinelibrary.com),2012, DOI:10.1002/jnm.1860.

32. Tripodi, E., et al., "Acceleration of electromagnetic launchers modeling by using graphic processing unit," IEEE 16th EML Symposium Conference Proceedings, 1-6, Beijing, May 15-19,2012.

33. Musolino, A., "Finite-element method/method of moments formulation for the analysis of current distribution in rail launchers," IEEE Trans. Magn., Vol. 41, No. 1, 387-392, 2005.
doi:10.1109/TMAG.2004.839268

34. Raugi, M., et al., "3-D field analysis in tubular induction launchers with armature transverse motion," IEEE Trans. Magn., Vol. 35, No. 1, 154-159, 1999.
doi:10.1109/20.738394

35. Rizzo, R., et al., "Numerical simulation of a complete generator-rail launch system," IEEE Trans. Magn., Vol. 41, No. 1, 369-374, 2005.
doi:10.1109/TMAG.2004.839267

36. Rizzo, R., et al., "Analysis of the performance of a combined coil-rail launcher," IEEE Trans. Magn., Vol. 39, No. 1, 103-107, 2003.
doi:10.1109/TMAG.2002.805858

37. Raugi, M., et al., "Analysis of the performance of a multi-stage pulsed linear induction launcher," IEEE Trans. Magn., Vol. 37, No. 1, 111-115, Jan. 2001..
doi:10.1109/20.911802

38. Tucci, M., et al., "A wavelet based method for the analysis of impulsive noise due to switch commutations in Power Line Communication (PLC) systems," IEEE Trans. Smart Grid, Vol. 2, No. 1, 80-89, Mar. 2011.

39. Tucci, M., et al., "Multi-resolution based sensitivity analysis of complex non-linear circuits," IET Circuits, Devices and Systems, Vol. 6, No. 3, 176-186, 2012.
doi:10.1049/iet-cds.2010.0429

40. Jiang, Z. and R. E. Christenson, "A fully dynamic magneto-rheological fluid damper model," IOP Smart Mater. Struct., Vol. 21, 1-12, May 2012.

41. Bicchi, A., et al., "Electromagnetic modeling and design of haptic interface prototypes based on magnetorheological fluids," IEEE Trans. Magn., Vol. 43, No. 9, 3586-3599, Sep. 2007.
doi:10.1109/TMAG.2007.901351

42. Yan, L., "Suggestion for selection of maglev option for Beijing-Shanghai high-speed line," IEEE Trans. Appl. Supercond., Vol. 14, No. 2, 936-939, Jun. 2004.
doi:10.1109/TASC.2004.830324