Vol. 36

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-04-29

A Complete Analytical Analysis and Modeling of Few Mode Non-Uniform Fiber Bragg Grating Assisted Sensing Waveguide Devices

By Sanjeev Kumar Raghuwanshi and Debi Prasad Panda
Progress In Electromagnetics Research M, Vol. 36, 23-37, 2014
doi:10.2528/PIERM14022304

Abstract

In this paper, we develop and present a complete analytical method to analyze the spectral response of a non-uniform multimode fiber Bragg grating assisted devices supporting a few modes. We present the analytical solution while taking into account the two forward and two backward propagating even or odd normal modes of the grating using the matrix method of multimode coupled grating assisted coupler, for sensing application. Earlier, these types of numerical technique based analysis were presented by other researchers, but no one seems to present a complete analytical solution for the given case. The present analytical analysis can simulate a single mode to multimode coupled sensing waveguide devices based on non-uniform grating assisted operation in a coupled structure. The potential applications of our findings will be mostly in sensing devices.

Citation


Sanjeev Kumar Raghuwanshi and Debi Prasad Panda, "A Complete Analytical Analysis and Modeling of Few Mode Non-Uniform Fiber Bragg Grating Assisted Sensing Waveguide Devices," Progress In Electromagnetics Research M, Vol. 36, 23-37, 2014.
doi:10.2528/PIERM14022304
http://www.jpier.org/PIERM/pier.php?paper=14022304

References


    1. Sipe, J. E., L. Poladian, and C. Martijn de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1307-1320, Apr. 1994.
    doi:10.1364/JOSAA.11.001307

    2. Wang, X., W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, "Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations," IEEE Photon. Tech. Lett., Vol. 23, 290-292, 2011.
    doi:10.1109/LPT.2010.2098436

    3. Giuntoni, I., D. Stolarek, A. Gajda, J. B. G. Winzer, B. Tillack, K. Petermann, and L. Zimmerman, "Integrated drop-filter for dispersion compensation based on SOI rib waveguides," Optical Fiber Communication Conference, OSA Technical Digest, Paper OThJ5, San Diego, CA, 2010.

    4. Fang, A. W., E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, "A distributed feedback silicon evanescent laser," Opt. Express, Vol. 6, No. 7, 4413-4419, 2008.
    doi:10.1364/OE.16.004413

    5. Berger, N. K., B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating," Opt. Express, Vol. 15, No. 2, 371-377, 2006.
    doi:10.1364/OE.15.000371

    6. Chrostowski, L., S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, "Silicon photonic resonator sensors and devices," Proceedings of SPIE, Vol. 8236, 823620, 2012.
    doi:10.1117/12.916860

    7. Tan, D. T. H., K. Ikeda, and Y. Fainman, "Coupled chirped vertical gratings for on-chip group velocity dispersion engineering," Appl. Phys. Lett., Vol. 95, 141109, 2009.
    doi:10.1063/1.3242028

    8. Shi, W., X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, "Contradirectional couplers in silicon-on-insulator rib waveguides," Opt. Lett., Vol. 36, 3999-4001, 2011.
    doi:10.1364/OL.36.003999

    9. Mekis, A., S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, "A grating-coupler-enabled CMOS photonics platform," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 3, 597-608, 2011.
    doi:10.1109/JSTQE.2010.2086049

    10. Shi, W., X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, "Silicon photonic grating-assisted, contra-directional couplers," Opt. Express, Vol. 21, No. 3, 3633, 2013.
    doi:10.1364/OE.21.003633

    11. Raghuwanshi, S. K., V. Kumar, and S. Talabattula, "Dispersion and peak reflectivity analysis in a non-uniform FBG based sensors due to arbitrary refractive index profile," Progress In Electromagnetics Research B, Vol. 36, 249-265, 2012.
    doi:10.2528/PIERB11081704

    12. Riziotis, C. and M. N. Zervas, "Design considerations of optical Add-Drop filters based on grating assisted mode conversion in null couplers," Journal of Lightwave Technology, Vol. 19, No. 1, 92-104, Jan. 2001.
    doi:10.1109/50.914490

    13. Erdogn, T., "Fiber grating spectra," Journal of Lightwave Technology, Vol. 15, No. 8, 1277-1294, Aug. 1997.
    doi:10.1109/50.618322

    14. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
    doi:10.2528/PIER09102704

    15. Watanabe, K., J. Ishihara, and K. Yasumoto, "Coupled-mode analysis of a grating-assisted directional coupler using singular perturbation technique," Progress In Electromagnetics Research, Vol. 25, 23-37, 2000.
    doi:10.2528/PIER99040503

    16. Weber, J.-P., "Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter," IEE Proceedings J --- Optoelectronics, Vol. 140, No. 5, 275-284, Oct. 1993.
    doi:10.1049/ip-j.1993.0045

    17. Chen, C. T., Linear System Theory and Design, Holt, New York, 1984.

    18. Raghuwanshi, S. K. and S. Talabattula, "Analytical method to estimate the bandwidth of an uniform FBG based instrument," J. Instrum. Soc., Vol. 37, No. 4, 297-308, India, 2007.

    19. Raghuwanshi, S. K. and S. Talabattula, "Asymmetric dispersion and pulse distortion in an uniform fiber Bragg gratings," Indian J. Phys., Vol. 82, No. 12, 1-7, Springer, Dec. 2008.

    20. Zhao, Y. and J. C. Palais, "Fiber Bragg grating coherence spectrum modeling, simulation, and characteristics," Journal of Lightwave Technology, Vol. 15, No. 1, Jan. 1997.
    doi:10.1109/50.552108

    21. Riziotis, C., Advanced Bragg grating based integrated optical devices for wavelength division multiplexing systems, University of Southampton, Sep. 2001.

    22. Hill, K. O. and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," Journal of Lightwave Technology, Vol. 15, No. 8, 1263-1276, Aug. 1997.
    doi:10.1109/50.618320

    23. Hill, K. O., "Photosensitivity in optical fiber waveguides: From discovery to commercialization," IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, 1186-1189, Nov./Dec. 2000.
    doi:10.1109/2944.902166

    24. Kashyap, R., Fiber Bragg Gratings, Academic Press, 1999.

    25. Othonos, A. and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, 1999.

    26. Ghatak, A. and K. Thyagarajan, An Introduction to Fiber Optics, Cambridge University Press, 1998.

    27. Yariv, A., "Coupled-mode theory for guided-wave optics," IEEE Journal of Quantum Electronics, Vol. 9, No. 9, 919-933, Sep. 1973.
    doi:10.1109/JQE.1973.1077767

    28. Huang, W.-P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, No. 3, 963-983, Mar. 1994.
    doi:10.1364/JOSAA.11.000963