Vol. 39

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-10-15

Study on Available Condition of Static Circuit Parameters Applied to Predict the Transmission Characteristics of Step Microstrip Line

By Ruigang Fu, Hui Zhang, Zengrui Li, Qing-Xin Guo, Jun-Hong Wang, Xueqin Zhang, and Yaoqing Lamar Yang
Progress In Electromagnetics Research M, Vol. 39, 85-92, 2014
doi:10.2528/PIERM14083104

Abstract

The static circuit parameters extracted from the field results of non-uniform microstrip line provides an efficient way to predict dynamic effect of non-uniform structure. The predictable frequency range of the static circuit parameters on prediction of the transmission characteristics of step microstrip line is researched in this paper. The circuit parameters are extracted from the full wave results of step line, respectively, at three frequencies (9 GHz, 15 GHz and 20 GHz). On one hand, the time domain transmission characteristics of step line can be solved from the equivalent circuit constructed by these extracted circuit parameters. On the other hand, the frequency domain S-parameter can be derived by the static distributed characteristic impedance. By comparing these time and frequency domain results obtained from the static circuit parameters with those obtained directly from the full wave method, the available condition of the static circuit parameters of the step microstrip line can be analyzed. This comparison shows that the static circuit parameters can be used in frequency bands from DC up to 20 GHz. To verify the accuracy of the static parameters used to predict the transmission characteristics of step line, the measured S11 is also given for comparison with static circuit parameters measurements.

Citation


Ruigang Fu, Hui Zhang, Zengrui Li, Qing-Xin Guo, Jun-Hong Wang, Xueqin Zhang, and Yaoqing Lamar Yang, "Study on Available Condition of Static Circuit Parameters Applied to Predict the Transmission Characteristics of Step Microstrip Line," Progress In Electromagnetics Research M, Vol. 39, 85-92, 2014.
doi:10.2528/PIERM14083104
http://www.jpier.org/PIERM/pier.php?paper=14083104

References


    1. Mei, K. K., "From Kirchoff to Lorentz-modifying circuit theory for microwave and mm-wave structures," 25th International Conference on Infrared and Millimeter Waves, Conference Digest, 371-374, Sep. 12-15, 2000.

    2. Wang, S. J. and R. Mittra, "A finite element cavity resonance method for waveguide and microstrip line discontinuity problems," IEEE Trans. Microwave Theory Tech., Vol. 42, 433-440, 1998.
    doi:10.1109/22.277437

    3. Liu, W. Y., J. S. Hong, and K. K. Mei, "Analysis of a double step microstrip discontinuity using generalized transmission line equations," Advanced Packaging, Vol. 26, No. 4, 368-374, Nov. 2003.
    doi:10.1109/TADVP.2003.821080

    4. Taflove, A. and S. Hagness, Computational Electromagnetics: The Finite-difference Time-domain Method, 3rd Edition, Artech House, Norwood, MA, 2005.

    5. Yang, S., Y. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.

    6. Monorchio, A., et al., "A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 3, 527-532, Mar. 1997.
    doi:10.1109/8.558668

    7. Florencio, R., R. R. Boix, and J. A. Encinar, "Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates," IEEE Trans. on Antennas and Propagat., Vol. 61, No. 10, 5088-5090, 2013.
    doi:10.1109/TAP.2013.2273213

    8. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
    doi:10.2528/PIER00080103

    9. Fotyga, G., K. Nyka, and M. Mrozowski, "Multilevel model order reduction with generalized compression of boundaries for 3-D FEM electromagnetic analysis," Progress In Electromagnetics Research, Vol. 139, 743-759, 2013.
    doi:10.2528/PIER13032708

    10. Liu, W. Y. and K. K. Mei, "Generalized transmission line equations," Antennas and Propagation Society International Symposium, Vol. 3, 798, Jun. 2002.

    11. Wang, C. Y., et al., "Analysis of non-uniform coupled transmission lines using generalized transmission line equations," APMC2005, Vol. 3, Dec. 4-7, 2005.

    12. Khalaj-Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
    doi:10.2528/PIER04061601

    13. Wang, H. J., L. Shu, and Z. R. Li, "Determination of distributed circuit parameters of nonuniform transmission line by studying the transient behavior of reflected current," 6th International Symposium on Antennas, Propagation and EM Theory, 831-834, Oct. 28-Nov. 1, 2003.

    14. Fu, G. R., et al., "Study on the distributed capacitance and inductance of ladder-type loseless microstrip lines," CSQRWC2013, 93-96, Jul. 21-25, 2013.

    15. Zhang, H., J. H. Wang, and W. Y. Liang, "Study on the applicability of extracted distributed circuit parameters of non-uniform transmission lines by equivalent circuit method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5–6, 839-848, 2008.
    doi:10.1163/156939308784159444

    16. Liang, Y. W., J. H.Wang, and H. Zhang, "Study on the applicability of the static distributed circuit parameters of non-uniform microstrip lines," International Journal of Infrared and Millimeter Waves, Vol. 28, No. 1, 43-50, 2007.
    doi:10.1007/s10762-006-9178-4

    17. Xing, F., Y. W. Liu, and W. M. Song, "Equivalent circuit of rectangular waveguide based on the generalized transmission line equation," Chinese Journal of Radio Science, Vol. 19, No. 1, 32-35, 2004.

    18. Wang, Y., J. Li, and L. X. Ran, "An equivalent circuit modeling method for ultra-wideband antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
    doi:10.2528/PIER08032303

    19. Luthur, J. J., S. Ebadi, and X. Gong, "Extraction of equivalent circuit model parameters of the feedless rectangular microstrip patch," PSURSI2013, 302-303, Jul. 7-13, 2013.

    20. Tuovinen, T. and M. Berg, "Impedance dependency on planar broadband dipole dimensions: An examination with antenna equivalent circuits," Progress In Electromagnetics Research, Vol. 144, 249-260, 2014.
    doi:10.2528/PIER13112202

    21. Ge, B. D. and Y. B. Yan, Finite-difference Time-domain Method for Electromagnetic Waves, 3rd Edition, Xidian University Press, Xi’an , 2011.