Vol. 41
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-05
A Novel Analytical Expressions Model for Corona Currents Based on Curve Fitting Method Using Artificial Neural Network
By
Progress In Electromagnetics Research M, Vol. 41, 51-62, 2015
Abstract
The analytical expressions for corona discharge currents are usually represented by the mathematic models based on curve fitting method. For the complex mechanisms, none of these currently models can describe a measured corona current with arbitrary waveforms. A novel curve fitting method using BP neural network (BPNN) technique is applied to describe the mathematic model of the corona currents in time domain. The analytical expressions for the currents can be established via extracting the weights and thresholds parameters of the trained BPNN. The expressions all have the same structure which has only four types of parameters, and the structure is independent of the corona current waveforms. A curve fitting for the measured corona currents with arbitrary waveforms by different models was carried out, and the results were analyzed, which indicate that the BPNN method performs best. Compared with the current expressions fitted by the double exponential function and Gaussian function, the expressions by BPNN can fit the current waveforms with the lowest mean square error (MSE) in time domain and the highest accuracy to spectra of the currents in frequency domain. The proposed method is suitable for establishing a unified analytical expressions model for corona currents with arbitrary shapes.
Citation
Gaohui Fan Shanghe Liu Ming Wei Xiao-Feng Hu , "A Novel Analytical Expressions Model for Corona Currents Based on Curve Fitting Method Using Artificial Neural Network," Progress In Electromagnetics Research M, Vol. 41, 51-62, 2015.
doi:10.2528/PIERM14111605
http://www.jpier.org/PIERM/pier.php?paper=14111605
References

1. Liu, X. H., W. He, F. Yang, H. Y. Wang, R. J. Liao, and H. G. Xiao, "Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure," Chin. Phys. B, Vol. 21, No. 7, 0752011-10, 2012.

2. Morrow, R., "Theory of positive corona in SF6 due to a voltage impulse," IEEE Trans. Plasma Sci., Vol. 19, No. 2, 86-94, 1991.
doi:10.1109/27.106801

3. Morrow, R., "Theory of electrical corona in SF6," Nucl. Instrum. Methods Phys. Res. A, Vol. 382, 57-65, 1996.
doi:10.1016/S0168-9002(96)00504-9

4. Morrow, R., "The theory of positive glow corona," J. Phys. D: Appl. Phys., Vol. 30, 3099-3114, 1997.
doi:10.1088/0022-3727/30/22/008

5. Wangninger, G., "Discharge currents of free moving particles in GIS," 10th Int.Symp.on High Voltage Engineering Dielectrics and Insulation, Vol. 2, 219-222, Montreal, QC, Canada, 1997.

6. Arin, N. and W. Blumer, "Transient electromagnetic fields due to switching operations in electric power systems," IEEE Trans. Electromagn. Compat., Vol. 29, No. 3, 233-237, 1987.

7. Judd, M. D., O. Farish, and B. F. Hampton, "Modelling partial discharge excitation of UHF signals in waveguide structures using Green’s functions," IEE Proc. Meas. and Technol., Vol. 143, No. 1, 63-70, 1996.
doi:10.1049/ip-smt:19960029

8. Maruvada, P. S., Corona Performance of High-Voltage Transmission Lines, 114, Research Studies Press LTD, Baldock, 2000.

9. Judd, M. D., "Using finite difference time domain techniques to model electrical discharge phenomena," IEEE Conf. on Electrical Insulation and Dielectric Phenomena, 518-521, Victoria, BC, Canada, 2000.

10. Nayak, S. K. and M. J. Thomas, "An integro-differential equation technique for the computation of radiated EMI due to corona on HV power transmission lines," IEEE T Power Delivery., Vol. 20, No. 1, 489-493, 2005.

11. Nayak, S. K. and M. J. Thomas, "A novel technique for the computation of radiated EMI due to corona on HV transmission lines," IEEE International Symposium on Electromagnetic Compatibility, 738-742, August 18-22, 2003.

12. Fu, H. Z., Y. J. Xie, and J. Zhang, "Analysis of corona discharge interference on antennas on composite airplanes," IEEE Trans. Electromagn. Compat., Vol. 50, No. 4, 822-827, 2008.
doi:10.1109/TEMC.2008.2004598

13. Liao, R. J., F. F. Wu, X. H. Liu, F. Yang, L. J. Yang, Z. Zhou, and L. Zhou, "Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air," Acta Phys. Sin., Vol. 61, No. 24, 245201-11, 2012.

14. Reid, A. J., M. D. Judd, B. G. Stewart, and R. A. Fouracre, "Partial discharge current pulses in SF6 and the effect of superposition of their radiometric measurement," J. Phys. D: Appl. Phys., Vol. 39, 4167-4177, 2006.
doi:10.1088/0022-3727/39/19/008

15. Zhou, Q., J. Tang, M. Tang, Y. B. Xie, and M. J. Liu, "Mathematic model of four typical defects for UHF partial discharge in GIS," Proceedings of the CSEE, Vol. 26, No. 8, 99-105, 2006.

16. Merbahi, N., M. Yousfi, and J. P. Gardou, "Electric and spectroscopic analysis of surface corona discharges in ambient air and comparison with volume corona discharges," IEEE Trans. Plasma Sci., Vol. 40, No. 4, 1167-1176, 2012.
doi:10.1109/TPS.2012.2184804

17. Daisuke, O., "Time-lag properties of corona streamer discharges between impulses sphere and dc needle electrodes under atmospheric air conditions," Rev. Sci. Instrum., Vol. 84, 024702, 2013.

18. Wang, P., G. X. Zhang, J. Zhou, and C. Gu, "Optical micro-current transducer for the measurement of corona discharge current under high voltage environment," Instrumentation and Measurement Technology Conference, 1-3, Warsaw, Poland, May 1–3, 2007.

19. Hornik, K., "Multilayer feedforward networks are universal approximators," Neural Networks, Vol. 2, 359-366, 1989.
doi:10.1016/0893-6080(89)90020-8

20. Wu, Q. M., M. Wei, G. H. Fan, and J. Liu, "Analytical expressions of electrostatic discharge current based on the BP neural network," High Voltage Engineering, Vol. 38, No. 11, 2912-2918, 2012.

21. Wu, Q. M. and M. Wei, "A mathematical expression for air ESD current waveform using BP neural network," Journal of Electrostatic, Vol. 71, 125-129, 2013.
doi:10.1016/j.elstat.2012.12.008