Vol. 41
Latest Volume
All Volumes
Harmonic Transponders: Performance and Challenges
Progress In Electromagnetics Research M, Vol. 41, 139-147, 2015
Performance of a harmonic transponder strongly depends on the properties of the antenna and diode used, which makes finding a good combination of them very important. For a transponder with a fixed antenna geometry, the effect of different diodes is analyzed through electromagnetic simulations and theoretical calculations. The antenna used in the transponder is directly matched to the impedance properties of a particular diode. Effects of both detector and varactor diodes on the return loss characteristics of the antenna and the obtainable transponder response are observed. Criteria for selecting a suitable diode are given. Benefits and drawbacks of using different antenna matching techniques are discussed, and principal design steps are given both for transponders matched directly to the antenna and for transponders with external matching circuits.
Kimmo Rasilainen, Janne Ilvonen, Anu Lehtovuori, Jari-Matti Hannula, and Ville Viikari, "Harmonic Transponders: Performance and Challenges," Progress In Electromagnetics Research M, Vol. 41, 139-147, 2015.

1. Finkenzeller, K., RFID Handbook, 2nd Ed., John Wiley & Sons, Chichester, England, 2003.

2. Marrocco, G., "Pervasive electromagnetics: Sensing paradigms by passive RFID technology," Wireless Commun., Vol. 17, No. 6, 10-17, Dec. 2010.

3. Khan, M. S., M. S. Islam, and H. Deng, "Design of a reconfigurable RFID sensing tag as a generic sensing platform towards the future Internet of Things," IEEE Internet Things J., Vol. 1, No. 4, 300-310, Aug. 2014.

4. Vogler, J. G., D. J. Maquire, and A. E. Steinhauer, "DINADE --- A new interrogation, navigation and detection system," Microw. J., Vol. 10, No. 4, 2-6, Apr. 1967.

5. Cant, E. T., A. D. Smith, D. R. Reynold, and J. L. Osborne, "Tracing butterfly flight paths across the landscape with harmonic radar," Proc. Royal Soc. B: Biolog. Sci., Vol. 272, No. 1565, 785-790, Apr. 2005.

6. Colpitts, B. G. and G. Boiteau, "Harmonic radar transceiver design: Miniature tags for insect tracking," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2825-2832, Nov. 2004.

7. RECCO Rescue System, , A system for locating avalanche victims, Recco AB, Lidingö, Sweden, [Online] Available: http://www.recco.com/about (Cited Jan. 8, 2015).

8. Riley, J. R. and A. D. Smith, "Design considerations for an harmonic radar to investigate the flight of insects at low altitude," Comput. Electron. Agriculture, Vol. 35, No. 2-3, 151-169, Aug. 2002.

9. Tsai, Z.-M., P.-H. Jau, N.-C. Kuo, J.-C. Kao, K.-Y. Lin, F.-R. Chang, E.-C. Yang, and H. Wang, "A high-range-accuracy and high-sensitivity harmonic radar using pulse pseudorandom code for bee searching," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 1, 666-675, Jan. 2013.

10. Singh, A. and V. M. Lubecke, "Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags," IEEE Sensors J., Vol. 12, No. 3, 558-565, Mar. 2012.

11. Aumann, H., E. Kus, B. Cline, and N. W. Emanteoglu, "A low-cost harmonic radar for tracking very small tagged amphibians," Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC), 234-237, Minneapolis, MN, USA, May 2013.

12. Psychoudakis, D., W. Moulder, C.-C. Chen, H. Zhu, and J. L. Volakis, "A portable low-power harmonic radar system and conformal tag for insect tracking," IEEE Antennas Wireless Propag. Lett., Vol. 7, 444-447, 2008.

13. Tiang, J. J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011.

14. Chioukh, L., H. Boutayeb, D. Deslandes, and K. Wu, "Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 9, 1847-1855, Sep. 2014.

15. Mazzaro, G. J., A. F. Martone, and D. M. McNamara, "Detection of RF electronics by multitone harmonic radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 50, No. 1, 477-490, Jan. 2014.

16. Kubina, B., J. Romeu, C. Mandel, M. Schüßler, and R. Jakoby, "Quasi-chipless wireless temperature sensor based on harmonic radar," Electron. Lett., Vol. 50, No. 2, 86-88, Jan. 2014.

17. Alimenti, F. and L. Roselli, "Theory on zero-power RFID sensors based on harmonic generation and orthogonally polarized antennas," Progress In Electromagnetics Research, Vol. 134, 337-357, 2013.

18. Rasilainen, K., J. Ilvonen, A. Lehtovuori, J.-M. Hannula, and V. Viikari, "On design and evaluation of harmonic transponders," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 15-23, Jan. 2015.

19. Rasilainen, K., J. Ilvonen, and V. Viikari, "Antenna matching at harmonic frequencies to complex load impedance," IEEE Antennas Wireless Propag. Lett., Vol. 14, 535-538, 2015.

20. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, Hoboken, NJ., USA, 2012.

21. Skyworks Solutions, Inc., , Wireless handset chip supplier, Woburn, MA., USA, [Online] Available: http://www.skyworksinc.com (Cited Jan. 8, 2015).

22. Avago Technologies, , Semiconductor component manufacturer, San Jose, CA., USA, [Online] Available: http://www.avagotech.com (Cited Jan. 8, 2015).

23. SEMCAD-X, , An FDTD-based electromagnetic simulator, Ver. 14.8 Aletsch, Schmid & Partner Engineering AG, Zurich, Switzerland, [Online] Available: http://www.semcad.com (Cited Jan. 8, 2015).

24. AWR Design Environment, , A circuit simulator, Ver. 10.02r, AWR Corporation, El Segundo, CA, USA, [Online] Available: http://www.awrcorp.com (Cited Jan. 8, 2015).

25. Datasheet for ETS-Lindgren 3146-08 quad-ridged horn antenna, [Online] Available: http://www.ets-lindgren.com (Cited Jan. 13, 2015).

26. Lehtovuori, A., R. Valkonen, and M. Valtonen, "Dual-band matching of arbitrary loads," Microwave Opt. Technol. Lett., Vol. 56, No. 12, 2958-2966, Dec. 2014.

27. Rahola, J., "Estimating the performance of matching circuits for antennas," Proc. 4th European Conf. Antennas and Propagation (EuCAP), Barcelona, Spain, Apr. 2010.