Vol. 41
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-03-23
Modeling and Analysis of Halbach Magnetized Permanent-Magnets Machine by Using Lumped Parameter Magnetic Circuit Method
By
Progress In Electromagnetics Research M, Vol. 41, 177-188, 2015
Abstract
Permanent-magnets (PMs) with tangential and parallel magnetization directions are combined in the Halbach PM (HPM) machine, which can offer high performances. However, the existing lumped parameter magnetic circuit (LPMC) model can only calculate one PM magnetization direction, namely either tangential direction or parallel direction. The key of this paper is to propose a method to divide and establish equivalent magnetic motive force (MMF) for HPM machine with both tangential and parallel magnetizations. Then, a LPMC model, using equivalent MMF, is developed to predict the electromagnetic performances for a four-phase HPM machine. In order to verify the effectiveness of the proposed LPMC model, a 6-pole/8-slot 15 kW HPM prototype is built. The comparative results of the proposed LPMC model, finite-element results and the experiments verify the effectiveness of the proposed LPMC model.
Citation
Guohai Liu, Mingming Shao, Wenxiang Zhao, Jinghua Ji, Qian Chen, and Qian Feng, "Modeling and Analysis of Halbach Magnetized Permanent-Magnets Machine by Using Lumped Parameter Magnetic Circuit Method," Progress In Electromagnetics Research M, Vol. 41, 177-188, 2015.
doi:10.2528/PIERM15012204
References

1. Zhu, Z. Q. and D. Howe, "Halbach permanent magnet machines and applications: A review," IEE Proc. Electr. Power Appl., Vol. 148, No. 7, 299-308, Jul. 2011.

2. Popa, D.-C., V.-I. Gliga, and L. Szabó, "Theoretical and experimental study of a modular tubular transverse flux reluctance machine," Progress In Electromagnetics Research, Vol. 139, 41-55, 2013.
doi:10.2528/PIER13030809

3. Ding, W., Z. Yin, L. Liu, J. Lou, Y. Hu, and Y. Liu, "Magnetic circuit model and finite-element analysis of a modular switched reluctance machine with E-core stators and multi-layer common rotors," IET Electr. Power Appl., Vol. 8, No. 8, 296-309, 2014.
doi:10.1049/iet-epa.2013.0366

4. Aravind Vaithilingam, C., N. Misron, I. Aris, M. H. Marhaban, and M. Nirei, "Electromagnetic design and FEM analysis of a novel dual-air-gap reluctance machine," Progress In Electromagnetics Research, Vol. 140, 523-544, 2013.
doi:10.2528/PIER13022008

5. Lin, D., P. Zhou, S. Stanton, and Z. J. Cendes, "An analytical circuit model of switched reluctance motors," IEEE Trans. on Magn., Vol. 45, No. 12, 5368-5375, Dec. 2009.
doi:10.1109/TMAG.2009.2024754

6. Kokernak, J. M. and D. A. Torrey, "Magnetic circuit model for the mutually coupled switched-reluctance machine," IEEE Trans. on Magn., Vol. 36, No. 2, 500-507, Mar. 2000.
doi:10.1109/20.825824

7. Xu, Z., S. Xie, and P. Mao, "Analytical design of flux-switching hybrid excitation machine by a nonlinear magnetic circuit method," IEEE Trans. on Magn., Vol. 49, No. 6, 3002-3008, Jun. 2013.
doi:10.1109/TMAG.2012.2236566

8. Zhu, Z. Q., Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, "Analysis of electromagnetic performance of flux-switching permanent-magnet machines by nonlinear adaptive lumped parameter magnetic circuit model," IEEE Trans. on Magn., Vol. 41, No. 11, 4277-4287, Nov. 2005.
doi:10.1109/TMAG.2005.854441

9. Zhou, S., H. Yu, M. Hu, C. Jiang, and L. Huang, "Nonlinear equivalent magnetic circuit analysis for linear flux-switching permanent magnet machines," IEEE Trans. on Magn., Vol. 48, No. 2, 883-886, Feb. 2012.
doi:10.1109/TMAG.2011.2173467

10. Cheng, M., K. T. Chau, C. C. Chan, E. Zhou, and X. Huang, "Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors," IEEE Trans. on Magn., Vol. 36, No. 1, 339-348, Part 2, 2000.
doi:10.1109/20.822544

11. Kano, Y., T. Kosaka, and N. Matsui, "A simple nonlinear magnetic analysis for axial-flux permanent-magnet machines," IEEE Trans. on Ind. Electron., Vol. 57, No. 6, 2124-2133, Jun. 2010.
doi:10.1109/TIE.2009.2034685

12. Tarmer, İ, "Designing an efficient permanent magnet generator for outdoor utilities," Int. J. Eng. Science Inno. Tech., Vol. 3, No. 3, 543-548, 2014.

13. Chen, Q., G. Liu, W. Zhao, and M. Shao, "Nonlinear adaptive lumped parameter magnetic circuit analysis for spoke-type fault-tolerant permanent-magnet motors," IEEE Trans. on Magn., Vol. 49, No. 9, 5150-5157, Sep. 2013.
doi:10.1109/TMAG.2013.2253327

14. Hemeida, A. and P. Sergeant, "Analytical modeling of surface PMSM using a combined solution of Maxwell’s equations and magnetic equivalent circuit," IEEE Trans. on Magn., Vol. 50, No. 12, 7027913, Dec. 2014.
doi:10.1109/TMAG.2014.2330801

15. Jung, M. S., S. J. In, K. J. Hyun, and S. R. Jong, "Analysis of overhang effect for a surface-mounted permanent magnet machine using a lumped magnetic circuit model," IEEE Trans. on Magn., Vol. 50, No. 5, 1-7, 2014.
doi:10.1109/TMAG.2013.2294154

16. Kazan, E. and A. Onat, "Modeling of air core permanent-magnet linear motors with a simplified nonlinear magnetic analysis," IEEE Trans. on Magn., Vol. 47, No. 6, 1753-1762, Jun. 2011.
doi:10.1109/TMAG.2011.2111375

17. Hsieh, M. F. and Y. C. Hsu, "A generalized magnetic circuit modeling approach for design of surface permanent-magnet machines," IEEE Trans. on Ind. Electron., Vol. 59, No. 2, 779-792, Feb. 2012.
doi:10.1109/TIE.2011.2161251

18. Kemmetmuller, W., D. Faustner, and A. Kugi, "Modeling of a permanent magnet synchronous machine with internal magnets using magnetic equivalent circuits," IEEE Trans. on Magn., Vol. 50, No. 6, 8101314, 8101314, Jun. 2014.

19. Zhu, L., S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, "Analytical modeling of open-circuit air-gap field distributions in multi-segment and multilayer interior permanent-magnet machines," IEEE Trans. on Magn., Vol. 45, No. 8, 3121-3130, Aug. 2009.
doi:10.1109/TMAG.2009.2019841

20. Lovelace, E. C., T. M. Jahns, and J. H. Lang, "A saturating lumped-parameter model for an interior PM synchronous machine," IEEE Trans. on Ind. Appl., Vol. 38, No. 3, 645-650, May-Jun. 2002.
doi:10.1109/TIA.2002.1003413

21. Seo, J. H. and H. S. Choi, "Cogging torque calculation for IPM having single layer based on magnetic circuit model," IEEE Trans. on Magn., Vol. 50, No. 10, 8102104, Oct. 2014.

22. Markovic, M. and Y. Perriard, "Optimization design of a segmented halbach permanent-magnet motor using an analytical model," IEEE Trans. on Magn., Vol. 45, No. 7, 2955-2960, Jul. 2009.
doi:10.1109/TMAG.2009.2015571

23. Rahideh, A. and T. Korakianitis, "Analytical magnetic field distribution of slotless brushless machines with inset permanent magnets," IEEE Trans. on Magn., Vol. 47, No. 6, 1763-1774, Part 2, Jun. 2011.
doi:10.1109/TMAG.2011.2110658

24. Yan, L., L. Zhang, T. Wang, Z. Jiao, C. Y. Chen, and I. M. Chen, "Magnetic field of tubular linear machines with dual Halbach array," Progress In Electromagnetics Research, Vol. 136, 283-299, 2013.
doi:10.2528/PIER12110302

25. Shen, Y. and Z. Q. Zhu, "General analytical model for calculating electromagnetic performance of permanent magnet brushless machines having segmented Halbach array," IET Electr. Syst. Transp., Vol. 3, No. 3, 57-66, 2013.
doi:10.1049/iet-est.2012.0055