Vol. 44

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-10-13

Low-Loss Complex Permittivity and Permeability Determination in Transmission/Reflection Measurements with Time-Domain Smoothing

By Sung Kim and Jeffrey R. Guerrieri
Progress In Electromagnetics Research M, Vol. 44, 69-79, 2015
doi:10.2528/PIERM15073010

Abstract

An approach is proposed for determination of the complex permittivity and permeability of low-loss materials, eliminating half-wavelength resonances occurring in transmission/reflection (T/R) measurements. To this end, we apply the time-domain smoothing for removing resonant artifacts from the wave impedance obtained with the conventional T/R method, with an assumption that we do not have such artifacts in the refractive index. Accordingly, the permittivity and permeability are found from the smoothed wave impedance and conventional refractive index. In this paper, our method is validated by measurements for two different low-loss materials, nylon and lithium ferrite, and those results are discussed. Further, results from the present approach are compared to those from the approximate approach derived in our previous work.

Citation


Sung Kim and Jeffrey R. Guerrieri, "Low-Loss Complex Permittivity and Permeability Determination in Transmission/Reflection Measurements with Time-Domain Smoothing," Progress In Electromagnetics Research M, Vol. 44, 69-79, 2015.
doi:10.2528/PIERM15073010
http://www.jpier.org/PIERM/pier.php?paper=15073010

References


    1. Von Hippel, A. R., Dielectric Materials and Application, MIT Press, MA, 1961.

    2. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, NJ, 2004.
    doi:10.1002/0470020466

    3. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle. R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index materials,", National Institute of Standards and Technology Technical Note 1536, 2005.

    4. Baker-Jarvis, J., M. D. Janezic, and D. C. De Groot, "High-frequency dielectric measurements," IEEE Instrumentation and Measurement Magazine, Vol. 13, No. 2, 24-31, 2010.
    doi:10.1109/MIM.2010.5438334

    5. Nicolson, A. M. and G. F. Ross, "Measurement of intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    6. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
    doi:10.1109/PROC.1974.9382

    7. Ligthart, L. P., "Fast computational techniques for accurate permittivity determination using transmission line methods," IEEE Trans. Microw. Theory Tech., Vol. 31, No. 3, 249-254, 1983.
    doi:10.1109/TMTT.1983.1131471

    8. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method ," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
    doi:10.1109/22.57336

    9. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line method for measuring permittivity and permeability,", National Institute of Standards and Technology Technical Note 1355-R, 1993.
    doi:10.1109/22.57336

    10. Boughriet, A.-H., C. Legrand, and A. Chapton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
    doi:10.1109/22.552032

    11. 11, S. and J. Baker-Jarvis, "An approximate approach to determining the permittivity and permeability near λ/2 resonances in transmission/reflection measurements," Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014.

    12. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2257-2267, 2009.
    doi:10.1109/TMTT.2009.2027160

    13. Qi, J., H. Kettunen, H. Wallen, and A. Sihvola, "Compensation of Fabry-Pérot resonances in homogenization of dielectric composites," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1057-1060, 2010.
    doi:10.1109/LAWP.2010.2091103

    14. Liu, X.-X., D. A. Powell, and A. Alù, "Correcting the Fabry-Pérot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, 235106, 2011.
    doi:10.1103/PhysRevB.84.235106

    15. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104

    16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608

    17. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Aaron, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226-2240, 2011.
    doi:10.1109/TAP.2011.2143679

    18. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. R. Baker-Jarvis, "Effective material property extraction of a metamaterial by taking boundary effects into account at TE/TM polarized incidence," Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012.

    19. Lefrançois, S., D. Pasquet, and G. Mazé-Merceur, "A new model for microwave characterization of composite materials in guided-wave medium," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 9, 1557-1562, 1996.
    doi:10.1109/22.536604

    20. Starostenko, S. N. and A. P. Vinogradov, "The reflectivity discrepancy method for the determination of the permittivity and permeability of complex materials," IEEE Trans. Instrum. Meas., Vol. 51, No. 1, 125-132, 2002.
    doi:10.1109/19.989915

    21. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
    doi:10.1163/156939310792149759

    22. James, J. F., A Student’s Guide to Fourier Transforms: With Applications in Physics and Engineering, 3rd Ed., Cambridge University Press, NY, 2011.
    doi:10.1017/CBO9780511762307

    23. Hill, D. A., "Reflection coefficient of a waveguide with slightly uneven walls," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 1, 244-252, 1989.
    doi:10.1109/22.20045

    24. Taylor, B. N. and C. E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results,", National Institute of Standards and Technology Technical Note 1297, 1994.