Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Low-Power Far Field Nanonewton Optical Force Trapping Based on Far-Field Nanofocusing Plasmonic Lens

By Pengfei Cao and Lin Cheng
Progress In Electromagnetics Research M, Vol. 47, 37-44, 2016


In this article, we study the far-field trapping behavior of dielectric nanospheres with diameter of 200 nm by utilizing a plasmon enhanced far-field nanofocusing lens. Based on our high effectnanofocusing circular plasmonic lens, such a far-field plasmonictrap is constituted by illuminating with a laser to form a sharper focus (subwavelength) due to a constructive interference of cylindrical surface plasmon wave. The nanoparticles can be steadily trapped in the far-field focal region (4.4λ) with an optical force to nanonewton (-4.76 nN) order, and the required optical power is less than 0.5 W. Compared with other surface plasmon tweezers, the proposed far-filed plasmonic tweezers can not only avoid physical contact with the trapped particles to prevent contamination and reduce thermal damage effects due to metal absorption, but also enable the easy trapping and manipulation of nanosizedielectric particles owing to nanonewton scale forces.


Pengfei Cao and Lin Cheng, "Low-Power Far Field Nanonewton Optical Force Trapping Based on Far-Field Nanofocusing Plasmonic Lens," Progress In Electromagnetics Research M, Vol. 47, 37-44, 2016.


    1. Ashkin, A., "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett., Vol. 24, 156-159, 1970.

    2. Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., Vol. 11, 288-290, 1986.

    3. Grier, D. G., "A revolution in optical manipulation," Nature, Vol. 424, No. 6950, 810-816, 2003.

    4. Ashkin, A., "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. U.S.A., Vol. 94, No. 10, 4853-4860, 1997.

    5. Ashkin, A., K. Sch¨utze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, "Force generation of organelle transport measured in vivo by an infrared laser trap," Nature, Vol. 348, 346-348, 1990.

    6. Ukita, H., T. Saitoh, and N. Sakahara, "Resolving discrepancy between theoretical and experimental optical trapping forces using effects of beam waist and trapping position displacement due to gravity," Opt. Rev., Vol. 13, No. 6, 436-442, 2006.

    7. Miao, X., H. Liao, and L. Y. Lin, "Opto-plasmonic tweezers for rotation and manipulation of micro/nano objects," Optical MEMS and Their Applications Conference, Proc. of IEEE/LEOS International Conference on IEEE, 15-16, 2005.

    8. Serey, X., S. Mandal, and D. Erickson, "Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials," Nanotechnology, Vol. 21, No. 30, 305202, 2010.

    9. Wang, K., E. Schonbrun, P. Steinvurzel, and K. B. Crozier, "Nanoparticle manipulation using a plasmonic nano-tweezer with an integrated heat sink," Conference on Lasers and Electro-Optics (CLEO), OSA, QWG2, 2011.

    10. Nieto-Vesperinas, M., P. Chaumet, and A. Rahmani, "Near field photonic forces," Phil. Trans. R. Soc. A, Vol. 362, 719-737, 2004.

    11. Erickson, D., X. Serey, Y. F. Chen, and S. Mandal, "Nanomanipulation using near field photonics," Lab. Chip, Vol. 11, No. 6, 995-1009, 2011.

    12. Quidant, R., D. Petrov, and G. Badenes, "Radiation forces on a rayleigh dielectric sphere in a patterned optical near field," Opt. Lett., Vol. 30, 1009-1011, 2005.

    13. Zhang, Q., J. J. Xiao, X. M. Zhang, and Y. Yao, "Optical binding force of gold nanorod dimers coupled to a metallic slab," Opt. Commun., Vol. 301-302, 121-126, 2013.

    14. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, No. 5582, 820-822, 2002.

    15. Valdivia-Valero, F. J. and M. Nieto-Vesperinas, "Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays: Interplay with extraordinary transmission," Opt. Commun., Vol. 284, No. 7, 1726-1733, 2011.

    16. Xu, H. and M. Kall, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett., Vol. 89, No. 24, 246802-246802, 2002.

    17. Arias-Gonzalez, J. R. and M. Nieto-Vesperinas, "Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions," JOSA A, Vol. 20, No. 7, 1201-1209, 2003.

    18. Zelenina, A. S., R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett., Vol. 32, No. 9, 1156-1158, 2007.

    19. Zelenina, A. S., R. Quidant, G. Badenes, and M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett., Vol. 31, No. 13, 2054-2056, 2006.

    20. Juan, M. L., M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nat. Photonics, Vol. 5, No. 6, 349-356, 2011.

    21. Zhang, W., L. Huang, C. Santschi, and O. J. Martin, "Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas," Nano Lett., Vol. 10, No. 3, 1006-1011, 2010.

    22. Grigorenko, A. N., N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics, Vol. 2, No. 6, 365-370, 2008.

    23. Righini, M., A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys., Vol. 3, No. 7, 477-480, 2007.

    24. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint, and Jr., "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting," Nano Lett., Vol. 12, No. 2, 796-801, 2012.

    25. Kang, J. H., K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, "Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas," Nat. Commun., Vol. 2, 582, 2011.

    26. Righini, M., P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, "Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas," Nano Lett., Vol. 9, No. 10, 3387-3391, 2009.

    27. Wang, K., E. Schonbrun, P. Steinvurzel, and K. B. Crozier, "Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink," Nat. Commun., Vol. 2, 469, 2011.

    28. Saleh, A. A. and J. A. Dionne, "Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures," Nano Lett., Vol. 12, No. 11, 5581-5586, 2012.

    29. Garcés-Chávez, V., R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B, Vol. 73, No. 8, 085417, 2006.

    30. Liu, Y., F. Stief, and M. Yu, "Subwavelength optical trapping with a fiber-based surface plasmonic lens," Opt. Lett., Vol. 38, No. 5, 721-723, 2013.

    31. Fazal, F. M. and S. M. Block, "Optical tweezers study life under tension," Nat. Photonics, Vol. 5, 318-321, 2011.

    32. Dong, J., C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, "Optical trapping with high forces reveals unexpected behaviors of prion fibrils," Nature Struct. Mol. Biol., Vol. 17, 1422-1430, 2010.

    33. Cheng, L., P. F. Cao, Y. Li, W. J. Kong, X. P. Zhao, and X. Zhang, "High efficient far-field nanofocusingwith tunable focus under radial polarization illumination," Plasmonics, Vol. 7, No. 1, 175-184, 2012.

    34. Cao, P., L. Cheng, X. Zhang, W.-P. Lu, W.-J. Kong, and X.-W. Liang, "Far-field tunable nano-focusing based on metallic slits surrounded with nonlinear-variant widths and linear-variant depths of circular dielectric grating," Progress In Electromagnetics Research, Vol. 138, 647-660, 2013.

    35. Evans, K., Nanocrystal-based optoelectronic devices in plamonic nanojunctions, Doctoral dissertation, Masters Thesis, Rice University, 2013.

    36. Roels, J., I. de Vlaminck, L. Lagae, B. Maes, D. van Thourhout, and R. Baets, "Tunable optical forces between nanophotonic waveguides," Nature Nanotech., Vol. 4, No. 8, 510-513, 2009.

    37. Yang, X., Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, "Optical forces in hybrid plasmonic waveguides," Nano Lett., Vol. 11, No. 2, 321-328, 2011.

    38. Zhang, J., K. F. MacDonald, and N. I. Zheludev, "Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces," Phys. Rev. B, Vol. 85, No. 20, 205123, 2012.

    39. Ploschner, M., M. Mazilu, T. F. Krauss, and K. Dholakia, "Optical forces near a nanoantenna," J. Nanophotonics, Vol. 4, No. 1, 041570-041570, 2010.

    40. Padgett, M. J. and R. W. Bowman, "Optical trapping and binding," Rep. Prog. Phys., Vol. 76, No. 2, 026401, 2013.

    41. Stratton, J. A., Electromagnetic Theory, Wiley, 2007.

    42. Novotny, L., "Forces in optical near-fields," Near-field Optics and Surface Plasmon Polaritons, S. Kawata. ed., 123-141, Springer Berlin Heidelberg, 2001.

    43. Chaumet, P. C., A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett., Vol. 88, No. 12, 123601, 2002.

    44. Novotny, L., R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett., Vol. 79, No. 4, 645, 1997.

    45. Yang, A. H. J., T. Lerdsuchatawanich, and D. Erickson, "Forces and transport velocities for a particle in a slot waveguide," Nano Lett., Vol. 9, No. 3, 1182-1188, 2009.