Vol. 48

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-14

Efficient Meshing Scheme for Bodies of Revolution-Application to Physical Optics Prediction of Electromagnetic Scattering

By Zohreh Asadi and Vahid Mohtashami
Progress In Electromagnetics Research M, Vol. 48, 163-172, 2016
doi:10.2528/PIERM16041102

Abstract

In this paper, we present an efficient meshing scheme for physical optics calculation of electromagnetic scattering from bodies of revolution. Piecewise linear approximation is used to represent the generatrix and circular perimeter of the body's cross section. This results in quadrilateral meshes and enables the application of multilevel search algorithms for efficient determination of the illuminated portion of the surface. Besides, the physical optics surface integral is reduced to a closed form expression using the Gordon's method. Simulation results con rm the proper accuracy and efficiency of the presented algorithm.

Citation


Zohreh Asadi and Vahid Mohtashami, "Efficient Meshing Scheme for Bodies of Revolution-Application to Physical Optics Prediction of Electromagnetic Scattering," Progress In Electromagnetics Research M, Vol. 48, 163-172, 2016.
doi:10.2528/PIERM16041102
http://www.jpier.org/PIERM/pier.php?paper=16041102

References


    1. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

    2. Uluisik, C., G. Cakir, M. Cakir, and L. Sevgi, "Radar cross section (RCS) modeling and simulation, Part 1: A tutorial review of definitions, strategies, and canonical examples," IEEE Antennas and Propagation Magazine, Vol. 50, No. 1, 115-126, Feb. 2008.
    doi:10.1109/MAP.2008.4494511

    3. Fan, T., L. Guo, B. Lv, and W. Liu, "An improved backward SBR-PO/PTD hybrid method for the backward scattering prediction of an electrically large target," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 512-515, 2015.

    4. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
    doi:10.2528/PIER07110803

    5. Della Giovampaola, C., G. Carluccio, F. Puggelli, A. Toccafondi, and M. Albani, "Efficient algorithm for the evaluation of the physical optics scattering by NURBS surfaces with relatively general boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4194-4203, Aug. 2013.
    doi:10.1109/TAP.2013.2261447

    6. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with NURBS surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
    doi:10.2528/PIER07082903

    7. Youssef, N., "Radar cross section of complex targets," Proceedings of the IEEE, Vol. 77, No. 5, 722-734, May 1989.
    doi:10.1109/5.32062

    8. Weinmann, F., "Ray tracing with PO/PTD for RCS modeling of large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1797-1806, Jun. 2006.
    doi:10.1109/TAP.2006.875910

    9. Domingo, M., F. Rivas, J. Perez, R. Torres, and M. F. Catedra, "Computation of the RCS of complex bodies modeled using NURBS surfaces," IEEE Antennas and Propagation Magazine, Vol. 37, No. 6, 36-47, Dec. 1995.
    doi:10.1109/74.482030

    10. Gordon, W., "Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 590-592, Jul. 1975.
    doi:10.1109/TAP.1975.1141105

    11. Havel, J. and A. Herout, "Yet faster ray-triangle intersection (using SSE4)," IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 3, 434-438, May 2010.
    doi:10.1109/TVCG.2009.73

    12. Woop, S., C. Benthin, and I. Wald, "Watertight ray/triangle intersection," Journal of Computer Graphics Techniques, Vol. 2, No. 1, 65-82, 2013.

    13. Tao, Y.-B., H. Lin, and H.-J. Bao, "Kd-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
    doi:10.2528/PIER08011305

    14. Jin, K.-S., T.-I. Suh, S.-H. Suk, B.-C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
    doi:10.1163/156939306775777341

    15. Bang, J.-K., B.-C. Kim, S.-H. Suk, K.-S. Jin, and H.-T. Kim, "Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 829-840, 2007.
    doi:10.1163/156939307780749129

    16. Glassner, S., An Introduction to Ray Tracing, Academic Press, 1989.

    17. Knoll, A., Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen, "Fast ray tracing of arbitrary implicit surfaces with interval and affine arithmetic," Journal of Computer Graphics Forum, Vol. 28, No. 1, 26-40, 2009.
    doi:10.1111/j.1467-8659.2008.01189.x

    18. Saad, Y., Numerical Methods for Large Eigenvalue Problems, 2nd Ed., SIAM, Philadelphia, 2011.
    doi:10.1137/1.9781611970739

    19. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., Artech House, Boston, MA, 1993.
    doi:10.1007/978-1-4684-9904-9

    20. Griesser, T. and C. Balanis, "Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 10, 1137-1147, Oct. 1987.
    doi:10.1109/TAP.1987.1143987

    21. Weinmann, F., "Curvature interpolation of facetted surfaces for high-frequency RCS simulations," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2008.

    22. Huang, W. F., Z. Zhao, R. Zhao, J. Y.Wang, Z. Nie, and Q. H. Liu, "GO/PO and PTD with virtual divergence factor for fast analysis of scattering from concave complex targets," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2170-2179, May 2015.
    doi:10.1109/TAP.2015.2405086

    23. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 252-258, Mar. 1984.
    doi:10.1109/TAP.1984.1143303

    24. Woo, A., H. Wang, M. Schuh, and M. Sanders, "EM programmer’s notebook-benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Magazine, Vol. 35, No. 1, 84-89, Feb. 1993.
    doi:10.1109/74.210840

    25. [Online], Available: https://www.feko.info/.

    26. Shampine, L., "Vectorized adaptive quadrature in MATLAB," Journal of Computational and Applied Mathematics, Vol. 211, No. 11, 131-140, Feb. 2008.
    doi:10.1016/j.cam.2006.11.021

    27. Persson, P.-O. and G. Strang, "A simple mesh generator in MATLAB," SIAM Review, Vol. 46, No. 2, 329-345, Jun. 2004.
    doi:10.1137/S0036144503429121