Vol. 57
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-18
Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments
By
Progress In Electromagnetics Research M, Vol. 57, 175-183, 2017
Abstract
In this paper we compare current implementations of commonly used numerical techniques - the Finite-Difference Time-Domain (FDTD) method, the Finite-Integration Technique (FIT), and Time-Domain Integral Equations (TDIE) - to solve the canonical problem of a horizontal dipole antenna radiating over lossless and lossy half-spaces. These types of environment are important starting points for simulating many Ground Penetrating Radar (GPR applications which operate in the near-field of the antenna, where the interaction among the antenna, the ground, and targets is important. We analysed the simulated current at the centre of the dipole antenna, as well as the electric field at different distances from the centre of the antenna inside the half-space. We observed that the results from the simulations using the FDTD and FIT methods agreed well with each other in all of the environments. Comparisons of the electric field showed that the TDIE technique agreed with the FDTD and FIT methods when observation distances were towards the far-field of the antenna but degraded closer to the antenna. These results provide evidence necessary to develop a hybridisation of current implementations of the FDTD and TDIE methods to capitalise on the strengths of each technique.
Citation
Craig Warren, Silvestar Sesnic, Alessio Ventura, Lara Pajewski, Dragan Poljak, and Antonios Giannopoulos, "Comparison of Time-Domain Finite-Difference, Finite-Integration, and Integral-Equation Methods for Dipole Radiation in Half-Space Environments," Progress In Electromagnetics Research M, Vol. 57, 175-183, 2017.
doi:10.2528/PIERM17021602
References

1. Banos, A., Jr. and J. P. Wesley, "The horizontal electric dipole in a conducting half-space,", Scripps Institution of Oceanography, 1953.
doi:10.1029/95RS02334

2. Bretones, A. R. and A. G. Tijhuis, "Transient excitation of a straight thin wire segment over an interface between two dielectric half spaces," Radio Science, Vol. 30, No. 6, 1723-1738, 1995.
doi:10.1016/j.jappgeo.2008.09.009

3. Cassidy, N. J. and T. M. Millington, "The application of finite-difference time-domain modelling for the assessment of GPR in magnetically lossy materials," Journal of Applied Geophysics, Vol. 67, No. 4, 296-308, 2009.
doi:10.2528/PIERL07112904

4. Chen, H. T., J.-X. Luo, and D.-K. Zhang, "An analytic formula of the current distribution for the vlf horizontal wire antenna above lossy half-space," Progress In Electromagnetics Research Letters, Vol. 1, 149-158, 2008.

5. Elsevier, , Scopus, the largest abstract and citation database of peer-reviewed literature, [online], http://www.scopus.com, Mar. 24, 2017.
doi:10.1016/j.conbuildmat.2005.06.007

6. Giannopoulos, A., "Modelling ground penetrating radar by gprMax," Construction and Building Materials, Vol. 19, No. 10, 755-762, 2005.

7. Gwangju Institute of Science and Technology, GMES - Gist Maxwell's equations solver, [online], http://sourceforge.net/projects/gmes/, Mar. 24, 2017.
doi:10.1007/s11220-005-4223-2

8. Liu, L. and S. A. Arcone, "Propagation of radar pulses from a horizontal dipole in variable dielectric ground: A numerical approach," Subsurface Sensing Technologies and Applications, Vol. 6, No. 1, 5-24, 2005.

9. Lumerical Solutions, Inc., FDTD solutions, [online], https://www.lumerical.com/tcadproducts/fdtd/, Mar. 24, 2017.

10. Massachusetts Institute of Technology, Meep - Mit electromagnetic equation propagation, [online], http://ab-initio.mit.edu/wiki/index.php/Meep, Mar. 24, 2017.

11., Mentor Graphics, Electromagnetic simulation solutions, [online], https://www.mentor.com/pcb/nimbic/, Mar. 24, 2017.
doi:10.1016/0021-9991(73)90167-8

12. Miller, E. K., A. J. Poggio, and G. J. Burke, "An integro-differential equation technique for the time domain analysis of thin wire structures. I. The numerical method," Journal of Computational Physics, Vol. 12, No. 1, 24-48, 1973.
doi:10.6028/jres.065D.065

13. Moore, R. K. and W. E. Blair, "Dipole radiation in a conducting half-space," Journal of Research of the National Bureau of Standards - D. Radio Propagation, Vol. 65, No. 6, 547-563, 1961.

14. Poljak, D., S. Sesnic, D. Paric, and K. El Khamlichi Drissi, "Direct time domain modeling of the transient field transmitted in a dielectric half-space for gpr applications," 2015 International Conference on IEEE Electromagnetics in Advanced Applications (ICEAA), 345-348, 2015.
doi:10.1002/9780470116883.ch11

15. Poljak, D., Advanced Modeling in Computational Electromagnetic Compatibility, John Wiley & Sons, 2007.
doi:10.1049/ip-map:19981631

16. Poljak, D. and V. Roje, "Time domain calculation of the parameters of thin wire antennas and scatterers in a half-space configuration," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 145, No. 1, 57-63, 1998.
doi:10.1016/j.aeue.2011.02.009

17. Rančić, M. P. and P. D. Rančić, "Horizontal linear antennas above a lossy half-space: A new model for the Sommerfeld’s integral kernel," International Journal of Electronics and Communications (AEU), Vol. 65, No. 10, 879-887, 2011.

18., Remcom, Xfdtd em simulation software, [online], http://www.remcom.com/xf7, Mar. 24, 2017.
doi:10.1163/156939390X00762

19. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, 1990.
doi:10.1109/TGRS.2014.2344858

20. Shangguan, P. and I. L. Al-Qadi, "Calibration of fdtd simulation of GPR signal for Asphalt pavement compaction monitoring," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 3, 1538-1548, 2015.
doi:10.1049/iet-map.2009.0033

21. Shoory, A., R. Moini, and S. H. H. Sadeghi, "Direct use of discrete complex image method for evaluating electric field expressions in a lossy half space," IET Microwaves, Antennas & Propagation, Vol. 4, No. 2, 258-268, 2010.
doi:10.1029/2001RS002529

22. Slob, E. and J. Fokkema, "Coupling effects of two electric dipoles on an interface," Radio Science, Vol. 37, No. 5, 2002.
doi:10.1190/1.3480619

23. Slob, E., M. Sato, and G. Olhoeft, "Surface and borehole ground-penetrating-radar developments," Geophysics, Vol. 75, No. 5, 75A103-75A120, 2010.

24. Soldovieri, F., J. Hugenschmidt, R. Persico, and G. Leone, "A linear inverse scattering algorithm for realistic GPR applications," Near Surface Geophysics, Vol. 5, No. 1, 29-42, 2007.
doi:10.1016/j.ndteint.2015.09.003

25. Solla, M., R. Asorey-Cacheda, X. Núñez-Nieto, and B. Conde-Carnero, "Evaluation of historical bridges through recreation of gpr models with the FDTD algorithm," NDT & E International, Vol. 77, 19-27, 2016.
doi:10.1002/andp.19093330402

26. Sommerfeld, A., "Über die ausbreitung der wellen in der drahtlosen telegraphie," Annalen der Physik, Vol. 333, 665-736, 1909.
doi:10.1002/andp.19263862516

27. Sommerfeld, A., "Über die ausbreitung der wellen in der drahtlosen telegraphie," Annalen der Physik, Vol. 386, No. 25, 1135-1153, 1926.
doi:10.1109/TGRS.2013.2289952

28. Tran, A. P., F. Andre, and S. Lambot, "Validation of near-field groundpenetrating radar modeling using full-wave inversion for soil moisture estimation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, 5483-5497, 2014.
doi:10.1139/p61-111

29. Wait, J. R., "The electromagnetic fields of a horizontal dipole in the presence of a conducting half-space," Canadian Journal of Physics, Vol. 39, No. 7, 1017-1028, 1961.
doi:10.1016/j.cpc.2016.08.020

30. Warren, C., A. Giannopoulos, and I. Giannakis, "GPRMAX: Open source software to simulate electromagnetic wave propagation for ground penetrating radar," Computer Physics Communications, Vol. 209, 163-170, 2016.

31. Weiland, T., "A discretization model for the solution of Maxwell’s equations for six-component fields," Archiv Elektronik und Uebertragungstechnik, Vol. 31, 116-120, 1977.
doi:10.1109/TAP.1966.1138693

32. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.