Vol. 56
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-19
A Novel Non-Coherent Micro-Doppler Imaging Method Using Hybrid Optimization
By
Progress In Electromagnetics Research M, Vol. 56, 53-61, 2017
Abstract
Conventional radar imaging methods use coherent analysis which highlights the necessity of signal phase measurement setups and complex inverse algorithms. To mitigate these drawbacks, this paper proposes a novel phase-less imaging algorithm. A nonlinear over-determined system of equations based on signal Doppler shift is developed, and a new error function originated from least square method is introduced. To obtain the exact position of targets, hybrid optimization is applied to the achieved error function. Simulation results demonstrate that the proposed method is well capable of detecting the targets containing strong point scatterers, even with the distance of 1cm. Also, the resolution of imaging algorithm for point scatterer circumstances is obtained in the order of millimeter. Concurrent with the priory imaging algorithms with the same imaging setups using proposed method reduces complexity and increases imaging swiftness.
Citation
Mahdi Safari Ali Abdolali , "A Novel Non-Coherent Micro-Doppler Imaging Method Using Hybrid Optimization," Progress In Electromagnetics Research M, Vol. 56, 53-61, 2017.
doi:10.2528/PIERM17022207
http://www.jpier.org/PIERM/pier.php?paper=17022207
References

1. Browning, K. A. and R. Wexler, "The determination of kinematic properties of a wind field using Doppler radar," Journal of Applied Meteorology, Vol. 7, No. 1, 105-113, 1968.
doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2

2. Fornaro, G., D. Reale, and F. Serafino, "Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 1, 224-237, 2009.
doi:10.1109/TGRS.2008.2000837

3. Bertl, S., A. Dallinger, and J. Detlefsen, "Broadband circular interferometric millimetre-wave ISAR for threat detection," Advances in Radio Science, Vol. 5, No. 7, 147-151, 2007.
doi:10.5194/ars-5-147-2007

4. Lin, Y., et al., "Interferometric circular SAR method for three-dimensional imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 6, 1026-1030, 2011.
doi:10.1109/LGRS.2011.2150732

5. Solimene, R. and A. Dell'Aversano, "Some remarks on time-reversal MUSIC for two-dimensional thin PEC scatterers," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 6, 1163-1167, 2014.
doi:10.1109/LGRS.2013.2288516

6. Chen, V. C., et al., "Analysis of micro-Doppler signatures," IEE Proceedings - Radar, Sonar and Navigation, Vol. 150, No. 4, 271-276, 2012.
doi:10.1049/ip-rsn:20030743

7. Zhang, Q., et al., "Imaging of a moving target with rotating parts based on the Hough transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 1, 291-299, 2008.
doi:10.1109/TGRS.2007.907105

8. Wang, Y., "Inverse synthetic aperture radar imaging of manoeuvring target based on range-instantaneous-Doppler and range-instantaneous-chirp-rate algorithms," IET Radar, Sonar and Navigation, Vol. 6, No. 9, 921-928, 2012.
doi:10.1049/iet-rsn.2012.0091

9. Stankovic, L., et al., "Micro-Doppler removal in the radar imaging analysis," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, 1234-1250, 2013.
doi:10.1109/TAES.2013.6494410

10. Chen, V. C. and S. Qian, "Joint time-frequency transform for radar range-Doppler imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 2, 486-499, 1998.
doi:10.1109/7.670330

11. Barbarossa, S. and A. Farina, "Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution," IEE Proceedings F (Radar and Signal Processing), Vol. 139, No. 1, 89-97, 1992.
doi:10.1049/ip-f-2.1992.0011

12. Moghimirad, E., A. Mahloojifar, and B. M. Asl, "Computational complexity reduction of synthetic aperture focus in ultrasound imaging using frequency-domain reconstruction," Ultrasonic Imaging, 2015.

13. Moses, R. L., L. C. Potter, and M. Cetin, "Wide-angle SAR imaging," Defense and Security, International Society for Optics and Photonics, 164-175, 2004.

14. Bjrck, A., Numerical Methods for Least Squares Problems, SIAM, 1996.
doi:10.1137/1.9781611971484

15. Homaifar, A., C. X. Qi, and S. H. Lai, "Constrained optimization via genetic algorithms," Simulation, Vol. 62, No. 4, 242-253, 1994.
doi:10.1177/003754979406200405

16. Chen, V. C. and W. J. Miceli, "Time-varying spectral analysis for radar imaging of manoeuvring targets," Radar, Sonar and Navigation, IEE Proceedings, Vol. 145, No. 5, 262-268, 1998.
doi:10.1049/ip-rsn:19982220

17. Fulop, S. A. and K. Fitz, "Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications," J. Acoust. Soc. Am., Vol. 119, No. 1, 360-371, 2006.
doi:10.1121/1.2133000

18. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

19. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903

20. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 055004, 2009.
doi:10.1088/0266-5611/25/5/055004

21. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753

22. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1600-1610, 2005.
doi:10.1109/TAP.2005.846723