Vol. 58
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-19
A Virtual Space-Time Adaptive Beamforming Method for Space-Time Antijamming
By
Progress In Electromagnetics Research M, Vol. 58, 183-191, 2017
Abstract
Space-time antijamming problem has received significant attention recently in the passive radar systems, such as Global Navigation Satelite Systems (GNSS). These space-time beamformers use two adaptive filters, i.e., spatial filter and temporal filter for canceling interference signals. However, most of the work on spacetime antijamming problem presented in the literature require multiple antennas and delay taps. In this paper, a virtual space-time adaptive beamforming method is proposed. The temporal smoothing technique is utilized to add a structure of the received data model for the implementation of the proposed method without delay tap. Compared with the previous work, the presented method offers a number of advantages over other recently proposed algorithms. For example, the space-time weight vector can be obtained by simple algebraic operations. It has lower computational complexity.It can reduce system overhead since the temporal smoothing technology is used instead of multiple delay taps. Simulation results are presented to verify that effectiveness of the proposed method.
Citation
Fulai Liu Ruiyan Du Xiaoyu Bai , "A Virtual Space-Time Adaptive Beamforming Method for Space-Time Antijamming," Progress In Electromagnetics Research M, Vol. 58, 183-191, 2017.
doi:10.2528/PIERM17050304
http://www.jpier.org/PIERM/pier.php?paper=17050304
References

1. Joseph, R. G., "Theory and application of covariance matrix tapers for robust adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 47, No. 4, 977-985, 1999.
doi:10.1109/78.752596

2. Liu, F. L., C. Y. Sun, J. K. Wang, and R. Y. Du, "A robust adaptive beamforming optimization control method via second-order cone programming for bistatic MIMO radar systems," ICIC Express Letters, Vol. 4, No. 5(B), 1823-1830, 2010.

3. Cox, H., R. Zeskind, and M. Owen, "Robust adaptive beamforming," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 35, No. 10, 1365-1376, 1987.
doi:10.1109/TASSP.1987.1165054

4. Liu, F. L., R. Y. Du, J. K. Wang, K. Wang, and B. Wang, "A robust adaptive control method for widening interference nulls," IET International Radar Conference, 2009.

5. Zeng, Y. B., "Array pattern nulling by amplitude-only perturbations," Journal of Electronics and Information Technology, Vol. 28, No. 11, 2073-2076, 2006.

6. Liu, F. L., S. M. Guo, Q. P. Zhou, and R. Y. Du, "Robust MVDR beamformer for nulling level control via multi-parametric quadratic programming," Progress In Electromagnetics Research C, Vol. 20, 239-254, 2011.
doi:10.2528/PIERC11022507

7. Wang, Y. D., F. Q. Chen, J. W. Nie, and G. F. Sun, "Optimum reference element selection for GNSS power-inversion adaptive arrays," Electronics Letters, Vol. 52, No. 20, 1723-1725, 2016.
doi:10.1049/el.2016.2360

8. Massa, A., M. Donelli, F. De Natale, S. Caorsi, and A. Lommi, "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2919-2924, 2004.
doi:10.1109/TAP.2004.837523

9. Donelli, M., S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893

10. Gao, G. X., M. Sgammini, M. Lu, and N. Kubo, "Protecting GNSS receivers from jamming and interference," Proceedings of the IEEE, Vol. 104, No. 6, 1327-1338, 2016.
doi:10.1109/JPROC.2016.2525938

11. Zhang, X. Y., X. H. Wang, and G. Z. Fan, "Research on knowledge-based STAP technology," IET International Radar Conference, 2009.

12. Zhao, X., L. Zhao, and M. Wen, "A novel GPS space-time anti-jamming scheme," Journal of Harbin Engineering University, Vol. 32, No. 3, 322-327, 2011.

13. Paulraj, A. J. and C. B. Papadias, "Space-time processing for wireless communications," IEEE Signal Process Magazine, Vol. 14, No. 6, 49-83, 1997.
doi:10.1109/79.637317

14. Setlur, P. and M. Rangaswamy, "Waveform design for radar STAP in signal dependent interference," IEEE Transactions on Signal Processing, Vol. 64, No. 1, 19-34, 2016.
doi:10.1109/TSP.2015.2451114

15. Xiong, P., M. Medley, and S. Batalama, "Spatial and temporal processing for global navigation satellite systems: The GPS receiver paradigm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, 1471-1484, 2003.
doi:10.1109/TAES.2003.1261146

16. Azaro, R., F. De Natale, M. Donelli, A. Massa, and E. Zeni, "Optimized design of a multifunction/multiband antenna for automotive rescue systems," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 392-400, 2006.
doi:10.1109/TAP.2005.863387

17. Azaro, R., F. De Natale, M. Donelli, E. Zeni, and A. Massa, "Synthesis of a prefractal dual-band monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, 2006.
doi:10.1109/LAWP.2006.880695

18. Yao, H. C., H. L. Wang, and K. Hu, "Design and implementation of navigation anti-jam terminal based on subband array processing technology," Fire Control Command Control, Vol. 37, No. 3, 617-622, 2012.

19. Firoozabadi, A. D. and H. R. Abutalebi, "Combination of nested microphone array and subband processing for multiple simultaneous speaker localization," IEEE International Symposium on Telecommunications, 907-912, 2012.
doi:10.1109/ISTEL.2012.6483115

20. Goldstein, J. S., I. S. Reed, and L. L. Scharf, "A multistage representation of the wiener filter based on orthogonal projections," IEEE Transactions on Information Theory, Vol. 44, No. 7, 492-496, 1997.

21. Gupta, I. J. and T. D. Moore, "Space-frequency adaptive processing (SFAP) for RFI mitigation in spread spectrum receivers," IEEE Antennas and Propagation Society International Symposium, No. 4, 172-175, 2003.

22. Fernández-Prades, C. and J. A. Fernández-Rubio, "Robust space-time beamforming in GNSS by means of second-order cone programming," IEEE International Conference on Acoustics, 2004.

23. Deng, J. H., J. K. Wang, C. Y. Lin, and S. M. Liao, "Adaptive space-time beamforming technique for passive radar system with ultra low signal to interference ratio," IEEE International Conference on Wireless Information Technology and Systems, 2010.

24. Zhao, H. W., Y. F. Shi, B. Q. Zhang, and M. M. Shi, "Analysis and simulation of interference suppression for space-time adaptive processing," IEEE International Conference on Signal Processing, 2014.

25. Liu, F. L., J. K.Wang, and R. Y. Du, "Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method," Signal Processing, Vol. 90, No. 3, 809-820, 2010.
doi:10.1016/j.sigpro.2009.08.013

26. Zhang, K. Y. and Z. Xu, Numerical Algebra, Science Press, Beijing, 2000.