Vol. 65
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-26
Multi-Band Fractaled Triangular Microstrip Antenna for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 65, 51-60, 2018
Abstract
The proposed microstrip antenna is based on fractal techniques and designed for wireless applications. The radiating element is an A-shaped triangle on which fractal concept is applied. Fractal concept is applied on the proposed A-Shaped Fractal Microstrip Antenna (ASFM-Antenna), similar to English alphabet letter A. Further the analysis and verification of result is achieved by testing the fabricated antenna and also comparison of simulated and experimental results. Von Koch's snowflake concept is used in which a single line is divided into four new lines, and it is done at each side of the triangle. This step is repeated. In this paper, a two-iteration Koch generator is used, thus the proposed antenna is designed. Simulations are carried out using commercially available HFSS (High Frequency Structure Simulator) based on finite element method. The antenna is simulated and fabricated, and results are recorded. It is found that simulated and experimental results are in close agreement with each other. The antenna resonates at 11.44 GHz, 13.178 GHz, 15.482 GHz, 19.902 GHz and 23.529 GHz. Hence, X-band [8.2-12.4 GHz], Ku-band [12.4-18 GHz] and K-band [18-26.5 GHz] are the frequencies of operating bands under consideration.
Citation
Mohd Gulman Siddiqui Abhishek Kumar Saroj Devesh Jamshed Ansari , "Multi-Band Fractaled Triangular Microstrip Antenna for Wireless Applications," Progress In Electromagnetics Research M, Vol. 65, 51-60, 2018.
doi:10.2528/PIERM18011027
http://www.jpier.org/PIERM/pier.php?paper=18011027
References

1. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

2. Cohen, N., "Fractal antenna application in wireless telecommunication," Proceeding of Electronics Industries Forum of New England, 43-49, 1997.
doi:10.1109/EIF.1997.605374

3. Li, D. and J.-F. Mao, "A Koch-like sided fractal bow-tie dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2242-2251, May 2012.
doi:10.1109/TAP.2012.2189719

4. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, Nov. 2000.
doi:10.1109/8.900236

5. Werner, D. H., P. L. Werner, and A. J. Ferraro, "Frequency independent features of self-similar fractal antennas," Antennas Propag. Soc. Int. Symp., AP-S. Dig., Vol. 3, 2050-2053, Jul. 1996.

6. Gianvittorrio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, 20-36, 2002.
doi:10.1109/74.997888

7. Viani, F., M. Salucci, F. Robol, and A. Massa, "Multiband fractal ZigBee/WLAN antenna for ubiquitous wireless environments," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1554-1562, Aug. 2012.
doi:10.1080/09205071.2012.704553

8. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 4, 517-524, Apr. 1998.
doi:10.1109/8.664115

9. Silva, H. A. M., A. G. D’Assunção, and J. P. Silva, "Design of modified pythagorean fractal antenna for multiband application," 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES), 1-2, Florence, 2017.

10. Kumar, A., B. R. Dutta, and S. Budhauliya, "Iterated Pythagorean fractal tree multiband antenna," Int. Journal Scientific Res. Pub., Vol. 3, No. 9, 1-3, 2013.

11. Kumar, D., A. Kumar, and A. K. Singh, "Design analysis of Pythagoras tree shaped multiband fractal antenna," Int. Conf. Comput. Intelligence Commun. Networks (CICN), 41-45, Bhopal, 2014.

12. Yu, Z., J. Yu, X. Ran, and C. Zhu, "A novel Koch and Sierpinski combined fractal antenna for 2G/3G/4G/5G/WLAN/navigation applications," Microwave and Optical Technology Letters, Vol. 59, 2147-2155, 2017.
doi:10.1002/mop.30698

13. Eskandari, Z., J. Ahmadi-Shokoh, A. Keshtkar, and L. Ghanbari, "A novel fractal for improving efficiency and its application in LTE mobile antennas," Microwave and Optical Technology Letters, Vol. 57, No. 10, Oct. 2015.

14. Minervino, D. R., A. G. D’Assuncao, and C. Peixeiro, "Mandelbrot fractal microstrip antennas," Microwave and Optical Technology Letters, Vol. 58, No. 1, Jan. 2016.
doi:10.1002/mop.29492

15. Oliveira, E. E. C., P. H. F. Silva, A. L. P. S. Campos, and A. G. D’Assuncao, "Small-size quasi-fractal patch antenna using the Minkowski curve," Microwave and Optical Technology Letters, Vol. 52, 805-809, 2010.
doi:10.1002/mop.25071

16. Silva, M. R., C. L. N. obrega, P. H. F. Silva, and A. G. D’Assuncao, "Optimal design of frequency selective surfaces with fractal motifs," IET Microwaves Antennas Propag., Vol. 8, 627-631, 2014.
doi:10.1049/iet-map.2013.0462

17. Ansari, J. A., N. P. Yadav, P. Singh, and A. Mishra, "Compact half U-slot loaded shorted rectangular patch antenna for broadband operation," Progress In Electromagnetics Research M, Vol. 9, 215-226, 2009.
doi:10.2528/PIERM09090102

18. Ansari, J. A., A. Mishra, N. P. Yadav, P. Singh, and B. R. Vishvakarma, "Compact triple U-shaped slot loaded circular disk patch antenna for bluetooth andWLAN application," International Journal of Microwave and Optical Technology, Vol. 6, No. 2, Mar. 2011.

19. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. I, Feb. 2003.

20. Peitgen, H. O., H. Jurgens, and D. Saupe, Chaos and Fractals New Frontiers of Science, Springer-Verlag, Inc., New York, 1992.

21. Wong, K.-L. and S.-C. Pan, "Compact triangular microstrip antenna," Electronics Letters, Vol. 33, No. 6, 433-434, Mar. 13, 1997.
doi:10.1049/el:19970332

22. Vishwakarma, R. K., J. A. Ansari, and M. K. Meshram, "Equilateral triangular microstrip antenna for circular polarization dual-band operation," Indian Journal of Radio & Space Physics, Vol. 35, 293-296, Aug. 2006.