Vol. 67
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-05
Gain and Noise Performance of Non-Foster Matching Circuit for VLF Receiver Loop Antenna
By
Progress In Electromagnetics Research M, Vol. 67, 35-44, 2018
Abstract
Non-Foster matching circuits are those that can function as negative capacitors or inductors, and can thus overcome the gain bandwidth limitation of passive matching circuits for antennas. This paper presents a non-Foster matching circuit (NFC) for a very low frequency (VLF) receiver loop antenna. The bandwidth of the antenna was improved by 383%, and the average gain was improved in most bands compared to a passive matching circuit (over 15-30 kHz). In contrast to circuits reported in other publications, the signal to noise ratio (SNR) of the passive matching network performed better than the non-Foster matching network. To analyze this phenomenon, a noise model was developed for the simplified balanced NFC, and noise analysis was conducted between the non-Foster and passive matching networks, which indicates that the non-Foster matching circuits cannot provide a better SNR performance than the passive matching circuits under low noise figure level receiver conditions.
Citation
Ya-Long Yan, Chao Liu, Yin-Hui Dong, and Huaning Wu, "Gain and Noise Performance of Non-Foster Matching Circuit for VLF Receiver Loop Antenna," Progress In Electromagnetics Research M, Vol. 67, 35-44, 2018.
doi:10.2528/PIERM18020904
References

1. Wheeler, H. A., "Fundamental limitations of small antennas," Proceedings of the IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

2. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, No. 12, 1163-1175-729, Jun. 1948.
doi:10.1063/1.1715038

3. Long, J., M. M. Jacob, and F. S. Daniel, "Broadband fast-wave propagation in a non-Foster circuit loaded waveguide," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 789-798, Apr. 2014.

4. Saadat, S., M. Adnan, H. Mosallaei, et al. "Composite metamaterial and metasuiface integrated with non-Foster active circuit elements: A bandwidth-enhancement investigation," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1210-1218, Mar. 2013.
doi:10.1109/TAP.2012.2227654

5. Gao, F., F. S. Zhang, J. Long, et al. "Non-dispersive tunable reflection phase shifter based on non-Foster circuits," Electronics Letters, Vol. 50, No. 22, 1616-1618, Oct. 2014.
doi:10.1049/el.2014.2863

6. Sussman-Fort, S. E. and R. M. Rudish, "Non-Foster impedance matching of electrically-small antennas," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2230-2241, Aug. 2009.
doi:10.1109/TAP.2009.2024494

7. White, C. R. and J. S. Colburn, "A non-Foster VHF monopole antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 11, No. 4, 584-587, Jun. 2012.
doi:10.1109/LAWP.2012.2201129

8. Jacob, M. M. and D. F. Sievenpiper, "Gain and noise analysis of non-Foster matched antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 4993-5004, Jun. 2016.
doi:10.1109/TAP.2016.2617380

9. Obeidat, K. A., B. D. Raines, and R. G. Rojas, "Application of characteristic modes and non-Foster multiport loading to the design of broadband antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 203-207, Jan. 2010.
doi:10.1109/TAP.2009.2036281

10. Debogovie, T., S. Hrabar, and J. Perruisseau-Carrier, "Broadband Fabry-Perot radiation based on non-Foster cavity boundary," Electronics Letters, Vol. 49, No. 4, 445-446, Feb. 2013.

11. White, C. R., J. W. May, and J. S. Colburn, "A variable negative-inductance integrated circuit at UHF frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 1, 35-37, Jan. 2012.
doi:10.1109/LMWC.2011.2175718

12. Niang, A., A. de Lustrac, and S. N. Burokur, "Superluminal wave propagation in a non-Foster negative capacitor loaded transmission line," Electronics Letters, Vol. 53, No. 8, 547-549, Apr. 2017.
doi:10.1049/el.2017.0379

13. Nagarkoti, D. S., Y. Hao, et al. "Design of broadband non-Foster circuits based on resonant tunneling diodes," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 1398-1401, Apr. 2016.
doi:10.1109/LAWP.2015.2510654

14. Yang, H., I. Kim, and K. Kim, "Non-Foster matching of a resistively loaded vee dipole antenna using operational amplifiers," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1477-1482, Apr. 2016.
doi:10.1109/TAP.2015.2513090

15. Mirzaei, H. and G. Eleftheriades, "A resonant printed monopole antenna with an embedded non-Foster matching network," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5363-5371, Aug. 2013.
doi:10.1109/TAP.2013.2276912

16. Jacob, M. M., J. Long, and D. F. Sievenpiper, "Broadband non-Foster matching of an electrically small loop antenna," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Jul. 2012.

17. Tang, M. C., N. Zhu, and R. W. Ziolkowski, "Augmenting a modified egyptian axe dipole antenna with non-Foster elements to enlarge its directivity bandwidth," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 421-424, Mar. 2013.
doi:10.1109/LAWP.2013.2254103

18. Muha, D., S. Hrabar, I. Krois, and I. Bonic, "Design of microstrip non-foster leaky-wave antenna," Applied Electromagnetics and Communications (ICECom), 1-3, 2013.

19. Jacob, M. M., J. Long, and D. F. Sievenpiper, "Non-Foster loaded parasitic array for broadband steerable patterns," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6081-6090, Oct. 2014.
doi:10.1109/TAP.2014.2361903

20. Chao, L., VLF Communications, 99-100, Tide Press, Beijing, 2008.

21. Aberle, J. T., "Two-port representation of an antenna with application to non-Foster matching networks," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1218-1222, May 2008.
doi:10.1109/TAP.2008.922173

22. Sailors, D., "Techniques for estimating the effects of man-made radio noise on distributed military systems," AGARD, Use or Reduction of Propagation and Noise Effects in Distributed Military Systems, Conference Proceedings, Vol. 1, 14, SEE N91-30362 22-32, 1990.

23. Andrews, C. and A. Molnar, "Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers," IEEE Trans. Antennas Circuits and Systems, Vol. 57, No. 12, 3092-3013, Dec. 2010.
doi:10.1109/TCSI.2010.2052513