Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-08-10

Broadband and Low-Profile Slot Antenna with AMC Surface for X/Ku Applications

By Xueyan Song, Tian-Ling Zhang, and Ze-Hong Yan
Progress In Electromagnetics Research M, Vol. 71, 189-197, 2018
doi:10.2528/PIERM18061802

Abstract

A low-profile and broadband slot antenna with artificial magnetic conductor (AMC) surface is designed for X and Ku communications. Loaded with evolved C-shaped branches, the proposed coplanar waveguide (CPW)-fed slot antenna, which consists of two radiating slots, exhibits wide impedance frequency band performance. The presented AMC, the unit cell of which is made up of two central hexagonal circles with six rectangle branches, operates in a wide in-phase reflection frequency band ranging from 6.0 to 13.94 GHz (79.64%) at the reference plane 4 mm above the AMC surface. An AMC surface composed of 8×10 AMC unit cells is located under the slot antenna with a distance of approximately 0.107λ (λ denotes the free-space wavelength at 8.0 GHz), which improves the radiation and impedance match properties of the broadband slot antenna while maintaining low profile. A prototype of the proposed slot antenna with AMC surface is fabricated and measured. Measured results show that the composite antenna achieves a wide impedance bandwidth from 7.64 to 14.58 GHz (62.47%). The measured peak gain is up to 10.26 dBi, and the maximum cross-polarization level is -17.5 dB for both E and H planes. Good agreements between the measured and simulated results validate good performance of the presented slot antenna within the desired frequency band.

Citation


Xueyan Song, Tian-Ling Zhang, and Ze-Hong Yan, "Broadband and Low-Profile Slot Antenna with AMC Surface for X/Ku Applications," Progress In Electromagnetics Research M, Vol. 71, 189-197, 2018.
doi:10.2528/PIERM18061802
http://www.jpier.org/PIERM/pier.php?paper=18061802

References


    1. Malekpoor, H. and S. Jam, "Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4626-4638, 2016.
    doi:10.1109/TAP.2016.2607761

    2. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabres, J. P. Ciafardini, and M. Ferrando-Bataller, "On the interaction of characteristic modes in slot antennas etched on finite ground planes," 2016 European Conf. on Antennas Propag. (EuCAP), 1-5, 2016.

    3. Ghaffarian, M. S., G. Moradi, and P. Mousavi, "Wide-band circularly polarized slot antenna by using novel feeding structure," 2017 European Conf. on Antennas Propag. (EuCAP), 2172-2175, 2017.
    doi:10.23919/EuCAP.2017.7928629

    4. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    5. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, 2005.
    doi:10.1109/TAP.2004.840528

    6. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Trans. Antennas Propag., Vol. 59, 4-20, 2011.
    doi:10.1109/TAP.2010.2090458

    7. Vallecchi, A., J. R. Luis, F. Capolino, and F. D. Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 51-62, 2012.
    doi:10.1109/TAP.2011.2167912

    8. Song, X.-Y., C. Yang, T. Zhang, Z.-H. Yan, and R. Lian, "Broadband and gain enhanced bowtie antenna with AMC ground," Progress In Electromagnetics Research Letters, Vol. 61, 25-30, 2016.
    doi:10.2528/PIERL16042606

    9. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 735-742, 2012.
    doi:10.1109/TAP.2011.2173152

    10. Hadarig, R. C., M. E. Cos Gomez, Y. Alvarez, and F. Las-Heras, "Novel bow-tie-AMC combination for 5.8-GHz RFID tags usable with metallic objects," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1217-1220, 2010.
    doi:10.1109/LAWP.2010.2100358

    11. Saeed, S. M., C. A. Balanis, C. R. Birtcher, A. C. Durgun, and H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2396-2399, 2017.
    doi:10.1109/LAWP.2017.2720558

    12. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6487-6490, 2014.
    doi:10.1109/TAP.2014.2359194

    13. Hadarig, R. C., M. E. Cos, and F. Las-Heras, "Novel miniaturized artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 12, 174-177, 2013.
    doi:10.1109/LAWP.2013.2245093

    14. Yang, W. C., H. Wang, W. Q. Che, Y. Huang, and J. Wang, "High-gain and low-loss millimeter-wave LTCC antenna array using artificial magnetic conductor structure," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 390-395, 2015.
    doi:10.1109/TAP.2014.2364591

    15. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, NY, USA, 2000.
    doi:10.1002/0471723770

    16. Cos, M. E, Y. Alvarez, and F. Las-Heras, "Novel broadband artificial magnetic conductor with hexagonal unit cell," IEEE Antennas Wireless Propag. Lett., Vol. 10, 615-618, 2011.
    doi:10.1109/LAWP.2011.2159472