Vol. 73
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-19
A New Adaptive Tracking Algorithm for Near-Space Hypersonic Target
By
Progress In Electromagnetics Research M, Vol. 73, 119-129, 2018
Abstract
Because of the maneuvering of hypersonic target, the tracking of near space hypersonic target is difficult. In this paper, a new adaptive tracking algorithm based on aerodynamic model and improved square root cubature kalman filter is proposed. The adaptive piecewise constant Jerk model, gives the acceleration recursive process based on the dynamic model. Considering the non-linear characteristic of the target state model and the observation model, the improved square-root cubature kalman filter is applied to estimate target state. The simulation results under different maneuvers conditions indicate that the proposed method has higher accuracy than original aerodynamic model. The research provides a feasible solution to the further improvement of the real time tracking accuracy of near space hypersonic target.
Citation
Xiangke Guo Changyun Liu Qiang Fu Gang Wang , "A New Adaptive Tracking Algorithm for Near-Space Hypersonic Target," Progress In Electromagnetics Research M, Vol. 73, 119-129, 2018.
doi:10.2528/PIERM18070102
http://www.jpier.org/PIERM/pier.php?paper=18070102
References

1. Huang, W., S. B. Luo, and Z. G. Wang, "Key techniques and prospect of near-space hypersonic vehicle," Journal of Astronautics, Vol. 31, No. 5, 1259-1265, 2010.

2. Li, S. Y., et al., "Overview of anti-hypersonic weapon in near space," Modern Radar, Vol. 36, No. 6, 13-18, 2014.

3. Nie, W. S., S. B. Luo, and S. J. Feng, "Analysis of key technologies and development trend of near space vehicle," Journal of National University of Defense Technology, Vol. 34, No. 2, 107-113, 2012.

4. Hu, Z. D., Y. Cao, and S. F. Zhang, "Trajectory performance analysis and optimization design for hypersonic skip vehicle," Journal of Astronautics, Vol. 29, No. 3, 821-825, 2008.

5. Wang, L. D., et al., "Technology status and development trend for radar detection of hypersonic target in near space," Journal of Signal Processing, Vol. 30, No. 1, 72-85, 2014.

6. Dai, J., J. Cheng, and R. Guo, "Research on near-space hypersonic weapon defense system and the key technology," Journal of the Academy of Equipment Command & Technology, Vol. 21, No. 3, 58-61, 2010.

7. Li, X. R. and V. P. Jilkov, "Survey of maneuvering target tracking. Part II: Motion models of ballistic and space targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 96-119, 2010.
doi:10.1109/TAES.2010.5417150

8. Wu, N. and L. Chen, "Adaptive kalman ltering for trajectory estimation of hypersonic glide reentry vehicles," Acta Aeronautica et Astronautica Sinica, Vol. 34, No. 8, 1960-1971, 2013.

9. Li, H. N., et al., "Tracking oriented dynamics modeling of air-breathing hypersonic vehicles," Acta Aeronautica et Astronautica Sinica, Vol. 35, No. 6, 1651-1664, 2014.

10. Zhai, D. L., et al., "Trajectory prediction oriented aerodynamic performances analysis of hypersonic vehicles," Journal of Solid Rocket Technology, Vol. 40, No. 1, 115-120, 2017.

11. Zhai, D. L., et al., "Trajectory prediction of hypersonic vehicle based on adaptive IMM," Acta Aeronautica et Astronautica Sinica, Vol. 37, No. 11, 3466-3475, 2016.

12. Arasaratnam, S. Haykin and R. J. Elliot, "Cubature Kalman lters," IEEE Trans. on Automatic Control, Vol. 54, No. 6, 1254-1269, 2009.
doi:10.1109/TAC.2009.2019800

13. Mu, J. and Y. L. Cai, "Iterated cubature Kalman lter and its application," Systems Engineering and Electronics, Vol. 33, No. 7, 1454-1457, 2011.

14. Wang, P., et al., "Performance evaluation of several methods for tracking a ballistic object," Journal of Shenzhen University Science and Engineering, Vol. 29, No. 5, 392-398, 2012.
doi:10.3724/SP.J.1249.2012.05392

15. Li, X. R. and V. P. Jilkov, "A survey of maneuvering target tracking: Approximation techniques for nonlinear ltering," Proceeding of 2004 SPIE Conference on Signal and Data Processing of Small Targets, 537-550, 2004.
doi:10.1117/12.553357