Vol. 73
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-18
Compact Triple-Band Metamaterial Inspired Bandpass Filter with Controllable Transmission Zero Position
By
Progress In Electromagnetics Research M, Vol. 73, 111-118, 2018
Abstract
In this paper, a compact triple-band bandpass filter using metamaterial (MTM) inspired structure with controllable transmission zero (TZ) position has been proposed. The gap between feed lines develops electrical coupling and provides series capacitance. An open loop rectangular ring resonator with meander line and rectangular stub develops electric and magnetic couplings separately. Defected ground structure (DGS) provides proper impedance matching and increases the passband. In order to validate metamaterial (MTM) behaviour of designed filter dispersion diagram has been plotted. The position of transmission zero can be controlled by electric and magnetic coupling. The measured operating frequency ranges of three passbands are 1.85-2.15 GHz, 3.55-3.73 GHz and 3.85-4.0 GHz with the 3 dB fractional bandwidth of 15.63, 4.94 and 3.82 percent, respectively. It has minimum insertion loss of 0.7 dB, 0.5 dB and 0.5 dB at the 1st, 2nd, and 3rd passbands, respectively. The electrical size of the proposed filter is 0.16λg×0.15λg, where λg is the guided wavelength at zeroth order resonance (ZOR) frequency of 1.92 GHz.
Citation
Dilip Kumar Choudhary Raghvendra Kumar Chaudhary , "Compact Triple-Band Metamaterial Inspired Bandpass Filter with Controllable Transmission Zero Position," Progress In Electromagnetics Research M, Vol. 73, 111-118, 2018.
doi:10.2528/PIERM18070905
http://www.jpier.org/PIERM/pier.php?paper=18070905
References

1. Xu, J., W. Wu, and G. Wei, "Compact multi-band bandpass lters with mixed electric and magnetic coupling using multiple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 3909-3919, 2015.
doi:10.1109/TMTT.2015.2488643

2. Kumar, N. and Y. K. Singh, "Compact Tri-band bandpass lter using three stub-loaded open loop resonator with wide stopband and improved bandwidth response," Electronics Letters, Vol. 50, 1950-1952, 2014.
doi:10.1049/el.2014.3425

3. Wu, H. W., L. Y. Jian, Y. W. Chen, and Y. K. Su, "New triple passband bandpass lter using multipath stub loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 26, 186-188, 2016.
doi:10.1109/LMWC.2016.2526023

4. Xu, H. X., G. M. Wang, and J. G. Liang, "Novel designed CSRRs and its application in tunable tri-band bandpass lter based on fractal geometry," Radioengineering, Vol. 20, 312-316, 2011.

5. Lan, S., M. Weng, S. Chang, C. Hung, and S. Liu, "A tri-band bandpass lter with wide stopband using asymmetric stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 25, 19-21, 2015.
doi:10.1109/LMWC.2014.2365739

6. Fan, W. X., Z. P. Li, and S. X. Gong, "Tri-band lter using combined E-type resonators," Electronics Letters, Vol. 49, 193-194, 2013.
doi:10.1049/el.2012.3617

7. Koirala, G. R. and N. Y. Kim, "Multiband bandstop lter using an I-stub-loaded meandered defected microstrip structure," Radioengineering, Vol. 25, 61-66, 2016.
doi:10.13164/re.2016.0061

8. Choudhary, D. K. and R. K. Chaudhary, "A compact CPW-based dual-band lter using modi ed complementary split ring resonator," International Journal of Electronics and Communications (AEU), Vol. 89, 110-115, 2018.
doi:10.1016/j.aeue.2018.03.032

9. Xiao, J. K., Y. Li, J. G. Ma, and X. P. Bai, "Transmission zero controllable bandpass lters with dual and quad-band," Electronics Letters, Vol. 51, 1003-1005, 2015.
doi:10.1049/el.2015.0350

10. Ma, K., J. G. Ma, K. S. Yeo, and A. M. Do, "A compact size coupling controllable lter with separate electric and magnetic coupling paths," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1113-1119, 2006.
doi:10.1109/TMTT.2005.864118

11. Xiao, J. K., M. Zhu, Y. Li, and J. G. Ma, "Coplanar waveguide bandpass lters with separate electric and magnetic couplings," Electronics Letters, Vol. 52, 122-124, 2016.
doi:10.1049/el.2015.3112

12. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, Hoboken, NJ, USA, 2006.

13. Choudhary, D. K. and R. K. Chaudhary, "A compact coplanar waveguide (CPW)-fed zeroth- order resonant lter for bandpass applications," Frequenz Journal of RF-Engineering and Telecommunications, De Gruyter, Vol. 71, 305-310, 2017.

14. Choudhary, D. K. and R. K. Chaudhary, "Vialess wideband bandpass lter using CRLH transmission line with semi-circular stub," International Conference on Microwave and Photonics (ICMAP), 1-2, Dhanbad, India, 2015.

15. Wei, F., P. Y. Qin, Y. J. Guo, C. Ding, and X. W. Shi, "Compact balanced dual and tri-band BPFs based on coupled complementary split ring resonators (C-CSRR)," IEEE Microwave and Wireless Components Letters, Vol. 26, 107-109, 2016.
doi:10.1109/LMWC.2016.2517125

16. Kumar, A., D. K. Choudhary, and R. K. Chaudhary, "Metamaterial tri-band bandpass lter using meander-line with rectangular-stub," Progress In Electromagnetics Research Letters, Vol. 66, 121-126, 2017.
doi:10.2528/PIERL16123103

17. Cao, H., M. Yi, H. Chen, J. Liang, Y. Yu, X. Tan, and S. Yang, "A novel compact tri-band bandpass lter based on dual-mode CRLH-TL resonator and transversal stepped-impedance resonator," Progress In Electromagnetics Research Letters, Vol. 56, 53-58, 2015.
doi:10.2528/PIERL15080403

18. Wang, W., Y. Li, Q. Cao, S. Yang, and Y. Chen, "Design of triple-bandpass lters using an asymmetric stepped-impedance ring resonator," Progress In Electromagnetics Research Letters, Vol. 67, 7-12, 2017.
doi:10.2528/PIERL17011605

19. Choudhary, D. K. and R. K. Chaudhary, "A compact triple band metamaterial inspired bandpass lter using inverted S-shape resonator," Radioengineering, Vol. 27, 373-378, 2018.
doi:10.13164/re.2018.0373

20. Ning, H., J. Wang, Q. Xiong, and L. Mao, "Design of planar dual and triple narrow-band bandstop lters with independently controlled stopbands and improved spurious response," Progress In Electromagnetics Research, Vol. 131, 259-274, 2012.
doi:10.2528/PIER12072109

21. Xu, K., Y.-H. Zhang, D. Li, Y. Fan, J. L.-W. Li, W. T. Joines, and Q. H. Liu, "Novel design of a compact triple-band bandpass lter using short stub-loaded SIRs and embedded SIRs structure," Progress In Electromagnetics Research, Vol. 142, 309-320, 2013.
doi:10.2528/PIER13080507