Vol. 74

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-10-03

Nonlinear Single Negative Metamaterials Based on Varactor Diodes

By Tuanhui Feng, Hongpei Han, and Limin Wang
Progress In Electromagnetics Research M, Vol. 74, 25-32, 2018
doi:10.2528/PIERM18071801

Abstract

In this paper, the nonlinear single negative metamaterials (NLSNM) based on the microstrip loaded with varactor diodes are investigated. It is found that the NLSNM, including nonlinear epsilon-negative metamaterial (NLENM) and nonlinear mu-negative metamaterial (NLMNM) can be realized by loading varactor diodes and chip inductors onto the microstrip, and their transmission gaps can be controlled conveniently by the signal power. In addition, the nonlinear property of the heterostructure constructed of NLMNM and epsilon-negative metamaterial (ENM) is also studied, and the results show that the transmission property, especially the transmittance of the tunneling peak of the NLMNM-ENM heterostructure can also be regulated by the signal power. The NLSNM may have important potential applications in the microwave switch controlled by the signal power.

Citation


Tuanhui Feng, Hongpei Han, and Limin Wang, "Nonlinear Single Negative Metamaterials Based on Varactor Diodes," Progress In Electromagnetics Research M, Vol. 74, 25-32, 2018.
doi:10.2528/PIERM18071801
http://www.jpier.org/PIERM/pier.php?paper=18071801

References


    1. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.
    doi:10.1109/TAP.2003.817553

    2. Fujishige, T., C. Caloz, and T. Itoh, "Experimental demonstration of transparency in the ENG- MNG pair in a CRLH transmission-line implementation," Microw. Opt. Tech. Lett., Vol. 46, 476-481, 2005.
    doi:10.1002/mop.21022

    3. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a structure made of epsilon-negative and mu-negative metamaterial," J. Appl. Phys., Vol. 104, 013107, 2008.
    doi:10.1063/1.2949264

    4. Feng, T. H., Y. H. Li, H. T. Jiang, Y. Sun, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
    doi:10.1103/PhysRevE.79.026601

    5. Guo, Z. W., H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, "Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials," Scienti c Reports, Vol. 7, 7724, 2017.
    doi:10.1038/s41598-017-07711-w

    6. Qiu, Y., L. Peng, X. Jiang, Z. Sun, and S. Tang, "Ultra-small single-negative metamaterial insulator for mutual coupling reduction of high-pro le monopole antenna array," Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017.
    doi:10.2528/PIERC16100803

    7. Chen, Y. H., "Defect modes merging in one-dimensional photonic crystals with multiple single- negative material defects," Appl. Phys. Lett., Vol. 92, 011925, 2008.
    doi:10.1063/1.2832661

    8. Feng, T. H., F. Yang, Y. H. Li, Y. Sun, H. Lu, H. T. Jiang, Y. W. Zhang, and H. Chen, "Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency- like properties," Appl. Phys. Lett., Vol. 102, 251908, 2013.
    doi:10.1063/1.4810020

    9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    11. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split ring resonator-based left- handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.
    doi:10.1063/1.1631392

    12. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
    doi:10.1103/PhysRevLett.93.197401

    13. Xu, H. X., G. M. Wang, M. Q. Qi, and H. Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Opt. Express, Vol. 20, No. 20, 21968-21976, 2012.
    doi:10.1364/OE.20.021968

    14. Zeng, R., Y. P. Yang, and S. Y. Zhu, "Casimir force between anisotropic single-negative metamaterials," Phys. Rev. A, Vol. 87, 063823, 2013.
    doi:10.1103/PhysRevA.87.063823

    15. Valagiannopoulos, C. A., N. L. Tsitsas, and A. Lakhtakia, "Giant enhancement of the controllable in-plane anisotropy of biased isotropic noncentrosymmetric materials with epsilon-negative multilayers," J. Appl. Phys., Vol. 121, 063102, 2017.
    doi:10.1063/1.4975482

    16. Fu, X. L., G. C.Wu, W. X. Bai, G. M.Wang, and J. G. Liang, "Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application," Chin. Phys. B, Vol. 26, No. 2, 024101, 2017.
    doi:10.1088/1674-1056/26/2/024101

    17. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Nonlinear magnetic metamaterials," Opt. Express, Vol. 16, No. 25, 20266-20271, 2008.
    doi:10.1364/OE.16.020266

    18. Powell, D. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear electric metamaterials," Appl. Phys. Lett., Vol. 95, 084102, 2009.
    doi:10.1063/1.3212726

    19. Wang, Z. Y., Y. Luo, L. Peng, J. T. Huangfu, T. Jiang, D. X. Wang, H. S. Chen, and L. X. Ran, "Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial," Appl. Phys. Lett., Vol. 94, 134102, 2009.
    doi:10.1063/1.3111437

    20. Wang, Z. Y., Y. Luo, T. Jiang, Z. Wang, J. T. Huangfu, and L. X. Ran, "Harmonic image reconstruction assisted by a nonlinear metmaterial surface," Phys. Rev. Lett., Vol. 106, 047402, 2011.
    doi:10.1103/PhysRevLett.106.047402

    21. Wall, W. S., S. M. Rudolph, S. K. Hong, and K. L. Morgan, "Broadband switching nonlinear metamaterial," IEEE Antennas Wireless Propag. Lett., Vol. 10, 427-430, 2014.
    doi:10.1109/LAWP.2014.2308989

    22. Barbuto, M., F. Bilotti, and A. Toscano, "Power-selectivity horn ltenna loaded with a nonlinear SRR," 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics-Metamaterials, 22-24, Oxford, 2015.

    23. Monti, A., M. Barbuto, A. Toscano, and F. Bilotti, "Nonlinear mantle cloaking devices for power- dependent antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1727-1730, 2017.
    doi:10.1109/LAWP.2017.2670025

    24. Fernandes, D. E. and M. G. Silveirinha, "Bistability in mushroom-type metamaterials," J. Appl. Phys., Vol. 122, 014303, 2017.
    doi:10.1063/1.4989816

    25. Hooper, D. C., A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, "Strong rotational anisotropies affect nonlinear chiral metamaterials," Adv. Mater., Vol. 29, 1605110, 2017.
    doi:10.1002/adma.201605110

    26. Lv, W., F. Z. Xie, Y. J. Huang, J. Li, X. C. Fang, A. Rashid, W. R. Zhu, I. D. Rukhlenko, and G. J. Wen, "Nonlinear coupling states study of electromagnetic force actuated plasmonic nonlinear metamaterials," Opt. Express, Vol. 26, No. 3, 3211-3220, 2018.
    doi:10.1364/OE.26.003211

    27. Garbic, A. and G. V. Eleftheriades, "Experimental veri cation of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys., Vol. 92, 5930-5935, 2002.
    doi:10.1063/1.1513194