Vol. 74

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Nonlinear Single Negative Metamaterials Based on Varactor Diodes

By Tuanhui Feng, Hongpei Han, and Limin Wang
Progress In Electromagnetics Research M, Vol. 74, 25-32, 2018


In this paper, the nonlinear single negative metamaterials (NLSNM) based on the microstrip loaded with varactor diodes are investigated. It is found that the NLSNM, including nonlinear epsilon-negative metamaterial (NLENM) and nonlinear mu-negative metamaterial (NLMNM) can be realized by loading varactor diodes and chip inductors onto the microstrip, and their transmission gaps can be controlled conveniently by the signal power. In addition, the nonlinear property of the heterostructure constructed of NLMNM and epsilon-negative metamaterial (ENM) is also studied, and the results show that the transmission property, especially the transmittance of the tunneling peak of the NLMNM-ENM heterostructure can also be regulated by the signal power. The NLSNM may have important potential applications in the microwave switch controlled by the signal power.


Tuanhui Feng, Hongpei Han, and Limin Wang, "Nonlinear Single Negative Metamaterials Based on Varactor Diodes," Progress In Electromagnetics Research M, Vol. 74, 25-32, 2018.


    1. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.

    2. Fujishige, T., C. Caloz, and T. Itoh, "Experimental demonstration of transparency in the ENG- MNG pair in a CRLH transmission-line implementation," Microw. Opt. Tech. Lett., Vol. 46, 476-481, 2005.

    3. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a structure made of epsilon-negative and mu-negative metamaterial," J. Appl. Phys., Vol. 104, 013107, 2008.

    4. Feng, T. H., Y. H. Li, H. T. Jiang, Y. Sun, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.

    5. Guo, Z. W., H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, "Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials," Scienti c Reports, Vol. 7, 7724, 2017.

    6. Qiu, Y., L. Peng, X. Jiang, Z. Sun, and S. Tang, "Ultra-small single-negative metamaterial insulator for mutual coupling reduction of high-pro le monopole antenna array," Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017.

    7. Chen, Y. H., "Defect modes merging in one-dimensional photonic crystals with multiple single- negative material defects," Appl. Phys. Lett., Vol. 92, 011925, 2008.

    8. Feng, T. H., F. Yang, Y. H. Li, Y. Sun, H. Lu, H. T. Jiang, Y. W. Zhang, and H. Chen, "Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency- like properties," Appl. Phys. Lett., Vol. 102, 251908, 2013.

    9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.

    10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.

    11. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split ring resonator-based left- handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.

    12. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.

    13. Xu, H. X., G. M. Wang, M. Q. Qi, and H. Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Opt. Express, Vol. 20, No. 20, 21968-21976, 2012.

    14. Zeng, R., Y. P. Yang, and S. Y. Zhu, "Casimir force between anisotropic single-negative metamaterials," Phys. Rev. A, Vol. 87, 063823, 2013.

    15. Valagiannopoulos, C. A., N. L. Tsitsas, and A. Lakhtakia, "Giant enhancement of the controllable in-plane anisotropy of biased isotropic noncentrosymmetric materials with epsilon-negative multilayers," J. Appl. Phys., Vol. 121, 063102, 2017.

    16. Fu, X. L., G. C.Wu, W. X. Bai, G. M.Wang, and J. G. Liang, "Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application," Chin. Phys. B, Vol. 26, No. 2, 024101, 2017.

    17. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Nonlinear magnetic metamaterials," Opt. Express, Vol. 16, No. 25, 20266-20271, 2008.

    18. Powell, D. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear electric metamaterials," Appl. Phys. Lett., Vol. 95, 084102, 2009.

    19. Wang, Z. Y., Y. Luo, L. Peng, J. T. Huangfu, T. Jiang, D. X. Wang, H. S. Chen, and L. X. Ran, "Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial," Appl. Phys. Lett., Vol. 94, 134102, 2009.

    20. Wang, Z. Y., Y. Luo, T. Jiang, Z. Wang, J. T. Huangfu, and L. X. Ran, "Harmonic image reconstruction assisted by a nonlinear metmaterial surface," Phys. Rev. Lett., Vol. 106, 047402, 2011.

    21. Wall, W. S., S. M. Rudolph, S. K. Hong, and K. L. Morgan, "Broadband switching nonlinear metamaterial," IEEE Antennas Wireless Propag. Lett., Vol. 10, 427-430, 2014.

    22. Barbuto, M., F. Bilotti, and A. Toscano, "Power-selectivity horn ltenna loaded with a nonlinear SRR," 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics-Metamaterials, 22-24, Oxford, 2015.

    23. Monti, A., M. Barbuto, A. Toscano, and F. Bilotti, "Nonlinear mantle cloaking devices for power- dependent antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1727-1730, 2017.

    24. Fernandes, D. E. and M. G. Silveirinha, "Bistability in mushroom-type metamaterials," J. Appl. Phys., Vol. 122, 014303, 2017.

    25. Hooper, D. C., A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, "Strong rotational anisotropies affect nonlinear chiral metamaterials," Adv. Mater., Vol. 29, 1605110, 2017.

    26. Lv, W., F. Z. Xie, Y. J. Huang, J. Li, X. C. Fang, A. Rashid, W. R. Zhu, I. D. Rukhlenko, and G. J. Wen, "Nonlinear coupling states study of electromagnetic force actuated plasmonic nonlinear metamaterials," Opt. Express, Vol. 26, No. 3, 3211-3220, 2018.

    27. Garbic, A. and G. V. Eleftheriades, "Experimental veri cation of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys., Vol. 92, 5930-5935, 2002.