Vol. 84
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-27
High-Frequency Filters Manufactured Using Hybrid 3D Printing Method
By
Progress In Electromagnetics Research M, Vol. 84, 147-155, 2019
Abstract
In this work, two different high-frequency filters were produced, and each was manufactured in two different ways, one using conventional PCB technology and the other using hybrid 3D printing. The hybrid 3D printing technique combined the use of microdispensing of conductive inks and fused filament fabrication (FFF) of thermoplastic substrates. Measurements, properties, and comparisons between these filters are discussed. The goal of the research was to benchmark 3D printing of high-frequency filters to more confidently manufacture sophisticated devices and high-frequency systems by hybrid 3D printing.
Citation
Ubaldo Robles Edgar Bustamante Prya Darshni Raymond C. Rumpf , "High-Frequency Filters Manufactured Using Hybrid 3D Printing Method," Progress In Electromagnetics Research M, Vol. 84, 147-155, 2019.
doi:10.2528/PIERM18102603
http://www.jpier.org/PIERM/pier.php?paper=18102603
References

1. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.

2. Ketterl, T. P., et al., "A 2.45 GHz phased array antenna unit cell fabricated using 3-D multi-layer direct digital manufacturing," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4382-4394, Dec. 2015, doi: 10.1109/TMTT.2015.2496180.
doi:10.1109/TMTT.2015.2496180

3. Leigh, S. J., R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, "A simple, low-cost conductive composite material for 3D printing of electronic sensors," PLoS ONE, Vol. 7, No. 11, e49365, 2012, doi: 10.1371/journal.pone.0049365.
doi:10.1371/journal.pone.0049365

4. Espalin, D., D. W. Muse, E. MacDonald, and R. B. Wicker, "3D printing multifunctionality: Structures with electronics," The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 5, 963-978, May 2014.
doi:10.1007/s00170-014-5717-7

5. Li, B., P. A. Clarck, and K. H. Church, "Robust direct-write dispense tool and solutions for micro/meso-scale," Proceedings of the 2007 International Manufacturing Science and Engineering Conference, MSEC 2007, Atlanta, Georgia, USA, October 15-17, 2007.

6. Mohamed, O. A., S. H. Masood, and J. L. Bhowmik, "Optimization of fused deposition modeling process parameters: A review of current research and future prospects," Advances in Manufacturing, Vol. 3, No. 1, 42-53, March 2015.
doi:10.1007/s40436-014-0097-7

7. Mason, W. P. and R. A. Sykes, "The use of coaxial and balanced transmission lines in filters and wide band transformers for high radio frequencies," Bell Syst. Tech. J., Vol. 16, 275-302, 1937.
doi:10.1002/j.1538-7305.1937.tb00422.x

8. Levy, R. and S. B. Cohn, "A history of microwave filter research design and development," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1055-1067, 1984, ISSN 0018-9480.
doi:10.1109/TMTT.1984.1132817

9. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

10. Aguilar, J. R., M. Beadle, P. T. Thompson, and M. W. Shelley, "The microwave and RF characteristics of FR4 substrates," IEE Colloquium on Low Cost Antenna Technology, (Ref. No. 1998/206), 2/1-2/6, London, 1998.

11. National Bureau of Standards, Circular of the Bureau of Standards: Vol. 31, Copper Wire Tables, No. 31, 71, MARCXML Washington Govt. Print, 1914.

12. Sarvar, F., N. J. Poole, and P. A. Witting, "PCB glass-fibre laminates: Thermal conductivity measurements and their effect on simulation," Journal of Electronic Materials, Vol. 19, No. 12, 1345-1350, December 1990, doi:10.1007/BF02662823.
doi:10.1007/BF02662823

13. Technical Data Sheet, "DuPont CB028 Silver Conductor,", Vol. 19, 1345, doi: 10.1007/BF02662823, [online] http://www.mcm.dupont.com.

14. nScrypt Specification Sheet, "SmartPumpTM 100 Specification Sheet,", nScrypt Inc. Orlando, FL, [Online] https://www.nscrypt.com [https://www.nscrypt.com/wpcontent/uploads/2018/11/nScrypt-SmartPump-Gen2-2018.pdf].

15. Vaezi, M., H. Seitz, and S. Yang, "A review on 3D micro-additive manufacturing technologies," Int. J. Adv. Manuf. Technol., Vol. 67, 1721-1754, Springer-Verlag, London, 2012, doi 10.1007/s00170-012-4605-2#.

16. nScrypt Specification Sheet, "nFDTM Specification Sheet,", nScrypt Inc. Orlando, FL, [online] http://www.nscrypt.com [http://webolistic.com/nscrypt-624/wpcontent/uploads/2018/08/nScrypt-SmartPump-Gen2-2018.pdf].

17. Luukkonen, O., S. I. Maslovski, and S. A. Tretyakov, "A stepwise Nicolson-Ross-Weir-based material parameter extraction method," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1295-1298, 2011.
doi:10.1109/LAWP.2011.2175897

18. Church, K., E. MacDonald, P. Clark, R. Taylor, D. Paul, K. Stone, M. Wilhelm, F. Medina, J. Lyke, and R. Wicker, "Printed electronic processes for flexible hybrid circuits and antennas," Flexible Electronics & Displays Conference and Exhibition, 2009, 1-7, February 2-5, 2009.

19. Nam-Soo, K. and H. N. Kenneth, "Future direction of direct writing," J. Appl. Phys., Vol. 108, 102801, [online], available: http://dx.doi.org/10.1063/1.3510359, November 2010.

20. Carranza, G., U. Robles, C. L. Valle, J. J. Gutierrez, and R. C. Rumpf, "Design and hybrid additive manufacturing of 3D/volumetric electrical circuits," IEEE Trans. on Components, Packaging, and Manufacturing Technology, 2019.