Vol. 82
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-21
Plane Wave Scattering by Patches Periodically Placed on a Dielectric Rod Surface
By
Progress In Electromagnetics Research M, Vol. 82, 61-71, 2019
Abstract
Plane wave diffraction by a finite number of metal cylindrical rectangular strips (patches) periodically placed on a dielectric rod (DR) surface in azimuth direction is considered. The problem is solved by the Method of Moments (MoM) in the spectral domain using PieceWise Sinusoidal (PWS) basis functions. Topologies with a highly resonant behavior of the patch currents in both azimuth and longitudinal directions are considered. This includes topologies with 1, 2, or 3 patches that are nearly touching, in which case one can also view the topology as a slotted metal cylinder. For these slotted cylinders with one and two slots it is shown that 2D approximate analytical solutions based on the rigorous Riemann-Hilbert approach yield a good agreement with 3D MoM solutions for the natural frequency of the half wavelength resonance until the slot width reaches 40˚. It is found that in the 3D case the natural frequency of the half-wavelength resonance for gap coupled patches tends to zero when the slot is vanishing. The radar cross-section versus frequency, resonant current distributions on the patches and far fields are presented.
Citation
Alexander Svezhentsev Valeriy A. Kizka Guy Vandenbosch , "Plane Wave Scattering by Patches Periodically Placed on a Dielectric Rod Surface," Progress In Electromagnetics Research M, Vol. 82, 61-71, 2019.
doi:10.2528/PIERM19030903
http://www.jpier.org/PIERM/pier.php?paper=19030903
References

1. Chen, T., N. Bowler, and J. R. Bowler, "Analysis of arc-electrode capacitive sensors for characterization of dielectric cylindrical rods," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 1, 233-240, 2012.
doi:10.1109/TIM.2011.2157573

2. Svezhentsev, A. Ye., V. Volski, S. Yan, and G. A. E. Vandenbosh, "Shaped nanoantennas on cylindrical and planar substrate," Proc. of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 650-654, Kiev, Ukraine, May 29-June 2, 2017.

3. Tretyakova, S. S., O. A. Trtyakov, V. G. Sologub, and V. P. Shestopalov, "Excitation of the open structure of the ``squirrel cell'' type by a charge moving in a circle," Journal of Technical Physics, No. 10, 1923-1927, 1967 (in Russian).

4. Shestopalov, V. P., Summatory Equations in the Modern Theory of Diffraction, 252, Naukova Dumka, Kiev, 1983.

5. Nosich, A. I. and V. P. Shestopalov, "Excitation of a partially shielded round dielectric rod by lumped sources," Soviet Physics - Technical Physics, Vol. 28, No. 12, 1421-1426, 1983.

6. Svezhentsev, A. Ye. and V. V. Kryzhanovskiy, "Patch shape influence upon radar cross section of a cylindrical microstrip antenna," Progress In Electromagnetic Research B, Vol. 15, 307-324, 2009.
doi:10.2528/PIERB09050602

7. Svezhentsev, A. Ye., V. Kryzhanovskiy, and G. A. E. Vandenbosch, "Cylindrical microstrip array antennas with slotted strip-framed patches," Progress In Electromagnetic Research, Vol. 139, 539-558, 2013.
doi:10.2528/PIER13031916

8. Svezhentsev, A. Ye., P. J. Soh, S. Yan, and G. A. E. Vandenbosch, "Green’s functions for probe-fed complex-shape cylindrical microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 993-1003, 2015.
doi:10.1109/TAP.2015.2389794

9. Schelkunoff, S. A., "Some equivalence theorems of electromagnetics and their application to radiation problems," Bell Syst. Tech. Journ., Vol. 15, 92, 1936.
doi:10.1002/j.1538-7305.1936.tb00720.x

10. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Book Company, 1961.

11. Helmholtz, H., Theorie der Luftschwingungen in Rohren mit offenen Enden, Crelle, 1860.