Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-15

Transverse Resolution in Microwave Imaging for Strip Objects Buried in a Half-Space Medium

By Maria Antonia Maisto, Raffaele Solimene, and Rocco Pierri
Progress In Electromagnetics Research M, Vol. 88, 145-157, 2020
doi:10.2528/PIERM19080301

Abstract

In this paper we are concerned with a microwave imaging problem for a non-magnetic two-layered background medium, where objects are buried in the lower half-space, and the scattered field is collected in the upper one according to a multi-monostatic configuration. In particular, we are interested in estimating the achievable transverse resolution. As well known, range resolution mainly depends on the working frequency band whereas transverse resolution depends on the geometrical parameters of the configuration and is usually computed in correspondence to the highest (or even the average) adopted frequency. Determining transverse resolution is much more difficult, and closed form estimations have been actually found only for the case of unbounded observation domain. However, in real scattering scenarios measurements have to be necessarily collected under an aspect limited setup. Therefore, in order to fill such a theoretical gap, here the focus is on the estimation of transverse resolution for bounded observation domains. To this end, we consider a single-frequency 2D scalar prototype configuration where the buried scattering object domain is represented by a strip parallel to the half-space interface. More in detail, we succeed in finding an analytical estimation of the transverse resolution which highlights the role of the configuration parameters as well as the dielectric permittivity of the lower half-space.

Citation


Maria Antonia Maisto, Raffaele Solimene, and Rocco Pierri, "Transverse Resolution in Microwave Imaging for Strip Objects Buried in a Half-Space Medium," Progress In Electromagnetics Research M, Vol. 88, 145-157, 2020.
doi:10.2528/PIERM19080301
http://www.jpier.org/PIERM/pier.php?paper=19080301

References


    1. Daniels, D. J., Ground Penetrating Radar, Wiley Online Library, 2005.

    2. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 538-548, Mar. 2007.
    doi:10.1109/TAP.2007.891568

    3. Chen, X., K.-M. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
    doi:10.2528/PIER04102902

    4. Hajebi, M., A. Tavakoli, and A. Hoorfar, "Frequency domain inverse profiling of buried dielectric elliptical-cylindrical objects using evolutionary programming," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 4, 503-507, Apr. 2018.
    doi:10.1109/LGRS.2017.2788699

    5. Sallucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 3, 1305-1317, 2017.
    doi:10.1109/TGRS.2016.2622061

    6. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Process. Lett., Vol. 23, No. 8, 1052-1056, 2016.
    doi:10.1109/LSP.2016.2579647

    7. Yu, Y., T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 5, 957-973, 2004.
    doi:10.1109/TGRS.2003.820601

    8. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 7, 1596-1607, 2001.
    doi:10.1109/36.934091

    9. Dong, Q. and C. M. Rappaport, "Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion," IEEE Trans. Geosci. Remote Sensing, Vol. 47, No. 11, 3664-3670, 2009.
    doi:10.1109/TGRS.2009.2028740

    10. Cui, T. J. and W. C. Chew, "Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 4, 2033-2041, 2000.
    doi:10.1109/36.851784

    11. Sun, Y., L. Qu, S. Zhang, and Y. Yin, "MT-BCS-based two-dimensional diffraction tomographic GPR imaging algorithm with multivie multistatic configuration," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 6, 831-835, 2016.
    doi:10.1109/LGRS.2016.2549538

    12. Qu, L., Y. Yin, Y. Sun, and L. Zhang, "Diffraction tomographic ground-penetrating radar multibistatic imaging algorithm with compressive frequency measurements," IEEE Geosci. Remote Sens. Lett., Vol. 12, No. 10, 2011-2015, 2015.
    doi:10.1109/LGRS.2015.2441991

    13. Hansen, T. B. and P. M. Johansen, "Inversion scheme for ground penetrating radar that takes into account the planar air soil interface," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 1, 496-506, 2000.
    doi:10.1109/36.823944

    14. Leone, G. and F. Soldovieri, "Analysis of the distorted born approximation for subsurface reconstruction: Truncation and uncertainties effects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 1, 66-74, 2003.
    doi:10.1109/TGRS.2002.806999

    15. Fortuny-Guasch, J., "A novel 3-D subsurface radar imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 2, 443-452, 2002.
    doi:10.1109/36.992808

    16. Bertero, M., "Linear inverse and ill-posed problems," Adv. Electron. Electron Phys., Vol. 75, 1-120, 1989.

    17. Soumekh, M., "A system model and inversion for synthetic aperture radar imaging," IEEE Transactions on Image Processing, Vol. 1, No. 1, 64-76, 1992.
    doi:10.1109/83.128031

    18. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.
    doi:10.1109/8.855491

    19. Cui, T. J., W. C. Chew, X. X. Yin, and W. Hong, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1398-1411, 2004.
    doi:10.1109/TAP.2004.829847

    20. Maisto, M. A., R. Solimene, and R. Pierri, "Resolution limits in inverse source problem beyond the Fresnel zone," J. Opt. Soc. Am. A, Vol. 36, No. 5, 826-833, 2019.
    doi:10.1364/JOSAA.36.000826

    21. Maisto, M. A., R. Solimene, and R. Pierri, "Depth resolution in strip current reconstructions in near non-reactive zone," J. Opt. Soc. Am. A, Vol. 36, No. 6, 975-982, 2019.
    doi:10.1364/JOSAA.36.000975

    22. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse source in near field: The case of strip current," J. Opt. Soc. Am. A, Vol. 35, 755-763, 2018.
    doi:10.1364/JOSAA.35.000755

    23. Tikhonov, A. N. and V. I. Arsenine, Solution to Ill-posed Problems, Halstead, 1977.

    24. Cheney, M. and R. J. Bonneau, "Imaging that exploits multipath scattering from point scatterers," Inverse Problems, Vol. 20, 1691-1711, 2004.
    doi:10.1088/0266-5611/20/5/023

    25. Maisto, M. A., R. Solimene, and R. Pierri, "Sampling approach for singular system computation of a radiation operator," J. Opt. Soc. Am. A, Vol. 36, 353-361, 2019.
    doi:10.1364/JOSAA.36.000975

    26. Gabor, D., "Light and information," Progress in Optics, E. Wolf, ed., Vol. 1, 109–153, North-Holland, Amsterdam, The Netherlands, 1961.