Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-30
Magnetically Controlled Electromagnetic Tunneling through Symmetric Trilayer Containing Ferrite Layer
By
Progress In Electromagnetics Research M, Vol. 88, 33-44, 2020
Abstract
Tunneling of microwave radiation through a symmetrical trilayer ENG-ferrite-ENG is considered, where ENG refers to a medium of negative permittivity. Such trilayer is an example of a magnetically controlled structure that under certain conditions allows a complete (or perfect) tunneling of the incident radiation. In this paper, the general conditions of the perfect tunneling are analyzed, and the transmissive properties of the structure are studied numerically. It is demonstrated that a broad passband, in which the structure is almost completely transparent, may be obtained both above and below the frequency of the ferromagnetic resonance. The bandwidth can be effectively controlled by an external field that is magnetizing the ferrite layer.
Citation
Sergey Anatol'evich Afanas'ev Irina Valer'evna Fedorova Dmitrij Igorevich Sementsov , "Magnetically Controlled Electromagnetic Tunneling through Symmetric Trilayer Containing Ferrite Layer," Progress In Electromagnetics Research M, Vol. 88, 33-44, 2020.
doi:10.2528/PIERM19090904
http://www.jpier.org/PIERM/pier.php?paper=19090904
References

1. Caloz, C. and T. Ito, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, 2006.

2. Boltasseva, A. and V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials, Vol. 2, No. 1, 1-17, 2008.
doi:10.1016/j.metmat.2008.03.004

3. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, Wiley, New York, 2008.

4. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

5. Baena, J. D., L. Jelinek, R. Marques, and F. Medina, "Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory and experiments," Phys. Rev. B, Vol. 72, 075116, 2005.
doi:10.1103/PhysRevB.72.075116

6. Tan, W., Z. Wang, and H. Chen, "Complete tunneling of light through mu-negative media," Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009.
doi:10.2528/PIERM09060201

7. Sabah, C., H. Tugrul Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multilayer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110

8. Afanas’ev, S. A., D. I. Sementsov, and Y. V. Yakimov, "Perfect tunneling of obliquely-incident wave through a structure with a double-negative layer," Optics Communications,, Vol. 369, 164-170, 2016.
doi:10.1016/j.optcom.2016.02.053

9. Feng, T., Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
doi:10.1103/PhysRevE.79.026601

10. Zhou, L., W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic-wave tunneling through negativepermittivity media with high magnetic fields," Phys. Rev. Lett., Vol. 94, 243905, 2005.
doi:10.1103/PhysRevLett.94.243905

11. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer," Phys. Rev. B, Vol. 83, No. 8, 081105, 2011.
doi:10.1103/PhysRevB.83.081105

12. Castaldi, G., V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling of obliquely incident waves through a single-negative slab paired with a double-positive uniaxial slab," Journal of the Optical Society of America B, Vol. 28, No. 10, 2362-2368, 2011.
doi:10.1364/JOSAB.28.002362

13. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.
doi:10.2528/PIER11010707

14. Chao, Y. and H. Zhao, "Electromagnetic tunneling through a three-layer asymmetric medium containing epsilon-negative slabs," Central European Journal of Physics, Vol. 11, No. 5, 594-600, 2013.

15. Zheng, J., Y. Chen, Z. Chen, X. Wang, P. Han, Z. Yong, Y. Wang, C. W. Leung, and C. M. Soukoulis, "Investigation of interface states in single-negative metamaterial layered structures based on the phase properties," Optics Express, Vol. 21, No. 14, 16742-16752, 2013.
doi:10.1364/OE.21.016742

16. Chen, Y., S. Huang, X. Yan, and J. Shi, "Electromagnetic tunneling through conjugated singlenegative metamaterial pairs and double-positive layer with high-magnetic fields," Chinese Optics Letters, Vol. 12, No. 10, 101601-101605, 2014.
doi:10.3788/COL201412.101601

17. Moccia, M., G. Castaldi, V. Galdi, A. Alu, and N. Engheta, "Optical isolation via unidirectional resonant photon tunneling," Journal of Applied Physics, Vol. 115, No. 4, 043107, 2014.
doi:10.1063/1.4862977

18. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.
doi:10.1017/CBO9781139644181

19. Gurevich, A. G. and G. A. Melkov, Magnetic Oscillations and Waves, Fizmatlit, Moscow, 1994.

20. Krupicka, S., Physik der Ferrite und der verwandten magnetischen Oxide, Vieweg+Teubner, Braunschweig, 1973.
doi:10.1007/978-3-322-83522-2