Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-12-30

Magnetically Controlled Electromagnetic Tunneling through Symmetric Trilayer Containing Ferrite Layer

By Sergey Anatol'evich Afanas'ev, Irina Valer'evna Fedorova, and Dmitrij Igorevich Sementsov
Progress In Electromagnetics Research M, Vol. 88, 33-44, 2020
doi:10.2528/PIERM19090904

Abstract

Tunneling of microwave radiation through a symmetrical trilayer ENG-ferrite-ENG is considered, where ENG refers to a medium of negative permittivity. Such trilayer is an example of a magnetically controlled structure that under certain conditions allows a complete (or perfect) tunneling of the incident radiation. In this paper, the general conditions of the perfect tunneling are analyzed, and the transmissive properties of the structure are studied numerically. It is demonstrated that a broad passband, in which the structure is almost completely transparent, may be obtained both above and below the frequency of the ferromagnetic resonance. The bandwidth can be effectively controlled by an external field that is magnetizing the ferrite layer.

Citation


Sergey Anatol'evich Afanas'ev, Irina Valer'evna Fedorova, and Dmitrij Igorevich Sementsov, "Magnetically Controlled Electromagnetic Tunneling through Symmetric Trilayer Containing Ferrite Layer," Progress In Electromagnetics Research M, Vol. 88, 33-44, 2020.
doi:10.2528/PIERM19090904
http://www.jpier.org/PIERM/pier.php?paper=19090904

References


    1. Caloz, C. and T. Ito, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, 2006.

    2. Boltasseva, A. and V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials, Vol. 2, No. 1, 1-17, 2008.
    doi:10.1016/j.metmat.2008.03.004

    3. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, Wiley, New York, 2008.

    4. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2558-2571, 2003.
    doi:10.1109/TAP.2003.817553

    5. Baena, J. D., L. Jelinek, R. Marques, and F. Medina, "Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory and experiments," Phys. Rev. B, Vol. 72, 075116, 2005.
    doi:10.1103/PhysRevB.72.075116

    6. Tan, W., Z. Wang, and H. Chen, "Complete tunneling of light through mu-negative media," Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009.
    doi:10.2528/PIERM09060201

    7. Sabah, C., H. Tugrul Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multilayer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
    doi:10.2528/PIER13013110

    8. Afanas’ev, S. A., D. I. Sementsov, and Y. V. Yakimov, "Perfect tunneling of obliquely-incident wave through a structure with a double-negative layer," Optics Communications,, Vol. 369, 164-170, 2016.
    doi:10.1016/j.optcom.2016.02.053

    9. Feng, T., Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
    doi:10.1103/PhysRevE.79.026601

    10. Zhou, L., W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic-wave tunneling through negativepermittivity media with high magnetic fields," Phys. Rev. Lett., Vol. 94, 243905, 2005.
    doi:10.1103/PhysRevLett.94.243905

    11. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer," Phys. Rev. B, Vol. 83, No. 8, 081105, 2011.
    doi:10.1103/PhysRevB.83.081105

    12. Castaldi, G., V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling of obliquely incident waves through a single-negative slab paired with a double-positive uniaxial slab," Journal of the Optical Society of America B, Vol. 28, No. 10, 2362-2368, 2011.
    doi:10.1364/JOSAB.28.002362

    13. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.
    doi:10.2528/PIER11010707

    14. Chao, Y. and H. Zhao, "Electromagnetic tunneling through a three-layer asymmetric medium containing epsilon-negative slabs," Central European Journal of Physics, Vol. 11, No. 5, 594-600, 2013.

    15. Zheng, J., Y. Chen, Z. Chen, X. Wang, P. Han, Z. Yong, Y. Wang, C. W. Leung, and C. M. Soukoulis, "Investigation of interface states in single-negative metamaterial layered structures based on the phase properties," Optics Express, Vol. 21, No. 14, 16742-16752, 2013.
    doi:10.1364/OE.21.016742

    16. Chen, Y., S. Huang, X. Yan, and J. Shi, "Electromagnetic tunneling through conjugated singlenegative metamaterial pairs and double-positive layer with high-magnetic fields," Chinese Optics Letters, Vol. 12, No. 10, 101601-101605, 2014.
    doi:10.3788/COL201412.101601

    17. Moccia, M., G. Castaldi, V. Galdi, A. Alu, and N. Engheta, "Optical isolation via unidirectional resonant photon tunneling," Journal of Applied Physics, Vol. 115, No. 4, 043107, 2014.
    doi:10.1063/1.4862977

    18. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.
    doi:10.1017/CBO9781139644181

    19. Gurevich, A. G. and G. A. Melkov, Magnetic Oscillations and Waves, Fizmatlit, Moscow, 1994.

    20. Krupicka, S., Physik der Ferrite und der verwandten magnetischen Oxide, Vieweg+Teubner, Braunschweig, 1973.
    doi:10.1007/978-3-322-83522-2