Vol. 89

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-31

A Novel Wideband Microstrip Patch Antenna with Non-Uniform Feed Based on Model Predictive

By Maryam Farahani and Sajad Mohammad-Ali-Nezhad
Progress In Electromagnetics Research M, Vol. 89, 101-109, 2020
doi:10.2528/PIERM19112706

Abstract

A novel wideband microstrip patch antenna with nonuniform transmission line feed is presented using model predictive control. Nonlinear model predictive control (NMPC) is used to achieve a nonuniform transmission line that matches with the microstrip patch antenna. The transmission line is extended using cosine expansion with the impedance differential equation then being used as the dynamic NMPC equation to find the unknown coefficients of that cosine expansion. The transmission line is designed such that the impedance of the input port matches the impedance of the microstrip antenna at the resonance frequency and its adjacent frequencies. The proposed antenna's impedance is 5.15-5.85 GHz. In this bandwidth, the radiation pattern is stable; the cross polarization and back lobe are -30 dB and -20 dB respectively. The error in the impedance bandwidth is about 4.2%. The simulation and measurement results are considered satisfactory.

Citation


Maryam Farahani and Sajad Mohammad-Ali-Nezhad, "A Novel Wideband Microstrip Patch Antenna with Non-Uniform Feed Based on Model Predictive," Progress In Electromagnetics Research M, Vol. 89, 101-109, 2020.
doi:10.2528/PIERM19112706
http://www.jpier.org/PIERM/pier.php?paper=19112706

References


    1. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, B. Mirkhaydarov, B. Ravelo, M. Shkunov, P. R. Young, and N. Benjelloun, "Design and synthesis of flexible switching 1×2 antenna array on Kapton substrate," Eur. Phys. J. Appl. Phys. (EPJAP), Vol. 74, No. 3, 1-10, 2016.

    2. Rabobason, Y. G., G. P. Rigas, S. Swaisaenyakorn, B. Mirkhaydarov, B. Ravelo, M. Shkunov, P. R. Young, and N. Benjelloun, "Design of flexible passive antenna array on Kapton substrate," Progress In Electromagnetics Research C, Vol. 63, 105-117, 2016.
    doi:10.2528/PIERC15120906

    3. Cheng, B., Z. Du, and D. Huang, "A broadband low-profile multimode microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1332-1336, July 2019.
    doi:10.1109/LAWP.2019.2915963

    4. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017.
    doi:10.2528/PIERL17042703

    5. Wi, S., Y. Lee, and J. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1196-1199, April 2007.
    doi:10.1109/TAP.2007.893427

    6. Cao, Y., et al., "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1405-1409, 2019.
    doi:10.1109/LAWP.2019.2917909

    7. Weigand, S., G. H. Huff, K. H. Pan, and J. T. Bernhard, "Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 457-468, March 2003.
    doi:10.1109/TAP.2003.809836

    8. Liu, S., W. Wu, and D. Fang, "Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 468-471, 2016.
    doi:10.1109/LAWP.2015.2453329

    9. Li, M. and K. Luk, "A differential-fed UWB antenna element with unidirectional radiation," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3651-3656, August 2016.
    doi:10.1109/TAP.2016.2565726

    10. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
    doi:10.2528/PIER09080204

    11. Klionovski, K. and A. Shamim, "Physically connected stacked patch antenna design with 100% bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3208-3211, 2017.
    doi:10.1109/LAWP.2017.2768599

    12. Sharma, R., A. Kandwal, and S. K. Khah, "Wideband DGS circular ring microstrip antenna design using fuzzy approach with suppressed cross-polar radiations," Progress In Electromagnetics Research C, Vol. 42, 177-190, 2013.
    doi:10.2528/PIERC13061504

    13. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, 1130-1136, March 2016.
    doi:10.1109/TVT.2015.2409886

    14. Liu, N., L. Zhu, W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1055-1062, March 2017.
    doi:10.1109/TAP.2017.2657486

    15. Lu, W., Q. Li, S. Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 4980-4990, October 2017.
    doi:10.1109/TAP.2017.2734073

    16. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

    17. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.

    18. Jin, T., H. Wei, D. L. M. Nzongo, and Y. Zhang, "Model predictive control strategy for NPC grid-connected inverters in unbalanced grids," Electronics Letters, Vol. 52, 1248-1250, 2016.
    doi:10.1049/el.2016.1285

    19. Novak, M., U. M. Nyman, T. Dragicevic, and F. Blaabjerg, "Analytical design and performance validation of finite set MPC regulated power converters," IEEE Transactions on Industrial Electronics, Vol. 66, 2004-2014, March 2019.
    doi:10.1109/TIE.2018.2838073

    20. Ajose, S. O., "Design formulas for impedance matching using a Hermite line," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 133, 319-320, August 1986.
    doi:10.1049/ip-h-2.1986.0056

    21. Eudes, T., B. Ravelo, and A. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.
    doi:10.2528/PIER10111805

    22. Grune, L. and J. Pannek, Nonlinear Model Predictive Control, Springer International Publishing AG, Switzerland, 2017.
    doi:10.1007/978-3-319-46024-6