Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-25

Antenna Pattern Optimization via Clustered Arrays

By Ahmed Jameel Abdulqader, Jafar Ramadhan Mohammed, and Raad H. Thaher
Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020
doi:10.2528/PIERM20042307

Abstract

In this paper, two different architectures based on fully and partially clustered arrays are proposed to optimize the array patterns. In the fully clustered arrays, all the elements of the original array were divided into several equal subarrays, while in the partially clustered arrays, only the side elements were grouped into subarrays, and the central elements were left individually. The second architecture enjoys many advantages compared to the first one. The proposed clustered arrays use quantized amplitude distributions, thus, their corresponding patterns were associated with high side lobes. To overcome this problem, a constraint mask was included in the pattern optimization process. Simulation results show that the peak sidelobe level and the complexity of the feeding network in the partially clustered arrays can be reduced to more than -28 dB and 70.833% respectively, for a total of 48 array elements, number of individual central elements = 24, number of clusters on both sides of the array Q = 4, and number of elements in each side cluster M=6. Finally, the principles of the proposed clustered arrays were extended and applied to the two dimensional planar arrays.

Citation


Ahmed Jameel Abdulqader, Jafar Ramadhan Mohammed, and Raad H. Thaher, "Antenna Pattern Optimization via Clustered Arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
doi:10.2528/PIERM20042307
http://www.jpier.org/PIERM/pier.php?paper=20042307

References


    1. Herd, J. S. and M. D. Conwey, "The evolution to modern phased array architectures," Proc. IEEE, Vol. 104, No. 3, 519-529, Mar. 2016.
    doi:10.1109/JPROC.2015.2494879

    2. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1207-1210, Apr. 2007.
    doi:10.1109/TAP.2007.893406

    3. Brockett, T. J. and Y. Rahmat-Samii, "Subarray design diagnostics for the suppression of undesirable grating lobes," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1373-1380, Mar. 2012.
    doi:10.1109/TAP.2011.2180333

    4. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of minimally subarrayed linear arrays via compressed sensing method," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 3, 487-491, Mar. 2019.
    doi:10.1109/LAWP.2019.2894826

    5. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-157, Mar. 2018.
    doi:10.2528/PIERM18021604

    6. Abdulkader, A, J., J. R. Mohammed, and R. H. Thaher, "Phase-only nulling with limited number of controllable elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.
    doi:10.2528/PIERC20010203

    7. Alvarez-Folgueiras, M., J. A. Rodrıguez-Gonzalez, and F. Ares-Pena, "High-performance uniformly excited linear and planar arrays based on linear semiarrays composed of subarrays with different uniform spacings," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 4002-4006, Dec. 2009.
    doi:10.1109/TAP.2009.2026497

    8. Yang, K., Y. Wang, and H. Tang, "A subarray design method for low sidelobe levels," Progress In Electromagnetics Research Letters, Vol. 89, 45-51, 2020.
    doi:10.2528/PIERL19110301

    9. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of subarrayed linear array via l1-norm minimization compressed sensing method," IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP 2018), 124-125, 2018.
    doi:10.1109/APCAP.2018.8538246

    10. Oliveri, G., M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4277-4287, Oct. 2016.
    doi:10.1109/TAP.2016.2595623

    11. Manica, L., P. Rocca, and A. Massa, "Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1684-1691, Jun. 2009.
    doi:10.1109/TAP.2009.2019914

    12. Zhao, X., Q. Yang, and Y. Zhang, "Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array," IET Microwav. Antennas Propag., Vol. 8, No. 5, 301-307, 2014.
    doi:10.1049/iet-map.2013.0492

    13. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies — A review," Proc. IEEE, Vol. 104, No. 3, 544-560, Mar. 2016.
    doi:10.1109/JPROC.2015.2512389

    14. Rocca, P., R. J. Mailloux, and G. Toso, "GA-based optimization of irregular subarray layouts for wideband phased arrays design," IEEE Antennas Wireless Propag. Lett., Vol. 14, 131-134, 2015.
    doi:10.1109/LAWP.2014.2356855

    15. Buchanan, K. R. and C. Flores-Molina, "Investigation of a novel subarray nullsteering technique for distributed random arrays," IEEE International Symposium on Antennas and Propagation (APSURSI), 1677-1678, 2016.
    doi:10.1109/APS.2016.7696545

    16. Taylor, T. T., "Design of circular apertures for narrow beam width and low sidelobes," IEEE Trans. Antennas Propag., Vol. 8, No. 1, 17-22, Jan. 1960.
    doi:10.1109/TAP.1960.1144807