Vol. 103
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-20
Improving Electromagnetic Compatibility Performance of Narrowband-IoT SiP Module
By
Progress In Electromagnetics Research M, Vol. 103, 185-196, 2021
Abstract
A package-board co-design method was applied for a Narrowband Internet-of-Things (NB-IoT) SiP module. The electromagnetic interference (EMI) generated by the module was studied by improving the transmission quality of radio frequency (RF) signal. The SiP models of the initial design and the optimized design were simulated separately to show that the optimized design significantly increased effective transmission power of the RF signal and suppressed near-field electromagnetic radiation intensity to a certain extent. In addition, the optimized design model was verified by measurement. The measured results show good agreement with the simulated ones and demonstrate that the package-board co-design method can improve the electromagnetic compatibility (EMC) of NB-IoT applications.
Citation
Haiyan Sun Ting Zhou Shoukun Huang Jicong Zhao Zhilong Zhang Xiaoyong Miao , "Improving Electromagnetic Compatibility Performance of Narrowband-IoT SiP Module," Progress In Electromagnetics Research M, Vol. 103, 185-196, 2021.
doi:10.2528/PIERM21040502
http://www.jpier.org/PIERM/pier.php?paper=21040502
References

1. Cunha, T. R., et al., "Validation by measurements of an IC modeling approach for SiP applications," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 8, 1214-1225, Aug. 2011.
doi:10.1109/TCPMT.2011.2158313

2. Yoon, S. W., S. Y. L. Lim, A. G. K. Viswanath, S. Thew, T. C. Chai, and V. Kripesh, "Reliability of a silicon stacked module for 3-D SiP microsystem," IEEE Transactions on Advanced Packaging, Vol. 31, No. 1, 127-134, Feb. 2008.
doi:10.1109/TADVP.2007.914971

3. Liu, L. T., et al., "Design and simulation of SIP for RF system," 2005 6th International Conference on Electronic Packaging Technology, 102-104, 2005.

4. Kripesh, V., et al., "Three-dimensional system-in-package using stacked silicon platform technology," IEEE Transactions on Advanced Packaging, Vol. 28, No. 3, 377-386, Aug. 2005.
doi:10.1109/TADVP.2005.852895

5. Kelander, I., M. Uusimaki, and A. N. Arslan, "EMC analysis on stacked packages," 2006 17th International Zurich Symposium on Electromagnetic Compatibility, 602-605, 2006.
doi:10.1109/EMCZUR.2006.215006

6. Jiang, F., M. Li, and L. Gao, "Research on conformal EMI shielding Cu/Ni layers on package," 2014 15th International Conference on Electronic Packaging Technology, 227-230, 2014.
doi:10.1109/ICEPT.2014.6922642

7. Tsai, M., et al., "Innovative packaging solutions of 3D double side molding with system in package for IoT and 5G application," 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 700-706, 2019.
doi:10.1109/ECTC.2019.00111

8. Liao, K. H., et al., "Novel EMI shielding methodology on highly integration SiP module," 2012 2nd IEEE CPMT Symposium Japan, 1-4, 2012.

9. Hwang, L. T. and T. S. J. Horng, "State-of-the-art IC packages, modules, and substrates," 3D IC and RF SiPs: Advanced Stacking and Planar Solutions for 5G Mobility, 111-137, IEEE, 2017.

10. Huang, C., et al., "Conformal shielding investigation for SiP modules," 2010 IEEE Electrical Design of Advanced Package & Systems Symposium, 1-4, 2010.

11. Karim, N., J. K. Mao, and J. Fan, "Improving electromagnetic compatibility performance of packages and SiP modules using a conformal shielding solution," 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 56-59, 2010.
doi:10.1109/APEMC.2010.5475724

12. Fee, T. M., et al., "Adhesion enhancement for electroless plating on mold compound for EMI shielding with industrial test compliance," 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014), 313-316, 2014.
doi:10.1109/SMELEC.2014.6920860

13. Wang, L. B., et al., "Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 700-705, Aug. 2011.
doi:10.1109/TEMC.2011.2159509

14. He, Y., et al., "Study on a conformal shielding structure with conductive adhesive coated on molding compound in 3-D packages," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 442-447, Apr. 2016.
doi:10.1109/TEMC.2015.2503729

15. Hoang, J. V., et al., "Breakthrough packaging level shielding techniques and EMI effectiveness modeling and characterization," 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 1290-1296, 2016.
doi:10.1109/ECTC.2016.300

16. Wu, T. L., et al., "Effective electromagnetic shielding of plastic packaging in low-cost optical transceiver modules," Journal of Lightwave Technology, Vol. 21, No. 6, 1536-1543, Jun. 2003.
doi:10.1109/JLT.2003.810087

17. Tai, M. F., S. L. Kok, and K. Mukai, "EMI shielding performance by metal plating on mold compound," 2016 IEEE 37th International Electronics Manufacturing Technology (IEMT) & 18th Electronics Materials and Packaging (EMAP) Conference, 1-4, 2016.

18. Jin, L., et al., "The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 328-334, Apr. 2014.
doi:10.1109/TEMC.2013.2280140

19. Rathi, V. and V. Panwar, "Electromagnetic interference shielding analysis of conducting composites in near- and far-field region," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1795-1801, Dec. 2018.
doi:10.1109/TEMC.2017.2780883

20. Hsiao, C. Y., et al., "Mold-based compartment shielding to mitigate the intra-system coupled noise on SiP modules," 2011 IEEE International Symposium on Electromagnetic Compatibility, 341-344, 2011.
doi:10.1109/ISEMC.2011.6038333

21. Sitaraman, S., et al., "Modeling, design and demonstration of integrated electromagnetic shielding for miniaturized RF SOP glass packages," 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 1956-1960, 2015.
doi:10.1109/ECTC.2015.7159869

22. Huang, S. and J. DeLaCruz, "Improvements of system-in-package integration and electrical performance using BVA wire bonding," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 7, 1020-1034, Jul. 2017.
doi:10.1109/TCPMT.2017.2657380

23. Huang, S. and J. DeLaCruz, "Techniques for improving system-in-package integration and electrical performance," 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 129-134, 2017.
doi:10.1109/ISEMC.2017.8078008

24. Huang, S., et al., "Suppression of couplings in high-speed interconnects using absorbing materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1432-1439, Oct. 2016.
doi:10.1109/TEMC.2016.2582867

25. Pulici, P., et al., "Signal integrity flow for system-in-package and package-on-package devices," Proceedings of the IEEE, Vol. 97, No. 1, 84-95, Jan. 2009.
doi:10.1109/JPROC.2008.2007469

26. Jandhyala, V., et al., "Toward building full-system EMI verification and early design flows through full-wave electromagnetic simulation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 22, No. 1, 104-115, Jan. 2012.
doi:10.1002/mmce.20589

27. Song, T., et al., "Full-chip signal integrity analysis and optimization of 3-D ICs," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24, No. 5, 1636-1648, May 2016.
doi:10.1109/TVLSI.2015.2471098

28. Oikawa, R., "Package substrate built-in three-dimensional distributed matching circuit for high-speed SerDes applications," 2008 58th Electronic Components and Technology Conference, 676-682, 2008.
doi:10.1109/ECTC.2008.4550045

29. Seo, D., et al., "Enhancement of differential signal integrity by employing a novel face via structure," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 26-33, Feb. 2018.
doi:10.1109/TEMC.2017.2725943

30. Chuang, H. H., et al., "Signal/Power integrity modeling of high-speed memory modules using chip-package-board coanalysis," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 381-391, May 2010.
doi:10.1109/TEMC.2010.2043108