Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-09-07

Wave Propagation in Electric Periodic Structure in Space with Modulation in Time (2D+1)

By Jose Salazar-Arrieta and Peter Halevi
Progress In Electromagnetics Research M, Vol. 104, 145-158, 2021
doi:10.2528/PIERM21061707

Abstract

We studied electromagnetic wave propagation in a system that is periodic in both space and time, namely a discrete 2D transmission line (TL) with capacitors modulated in tandem externally. Kirchhoff's laws lead to an eigenvalue equation whose solutions yield a band structure (BS) for the circular frequency ω as function of the phase advances kxa and kya in the plane of the TL. The surfaces ω(kxa, kya) display exotic behavior like forbidden ω bands, forbidden k bands, both, or neither. Certain critical combinations of the modulation strength mc and the modulation frequency Ω mark transitions from ω stopbands to forbidden k bands, corresponding to phase transitions from no propagation to propagation of waves. Such behavior is found invariably at the high symmetry X and M points of the spatial Brillouin zone (BZ) and at the boundary ω = (1/2)Ω of the temporal BZ. At such boundaries the ω(kxa, kya) surfaces in neighboring BZs assume conical forms that just touch, resembling a South American toy ``diábolo''; the point of contact is thus called a ``diabolic point''. Our investigation reveals interesting interplay among geometry, critical points, and phase transitions.

Citation


Jose Salazar-Arrieta and Peter Halevi, "Wave Propagation in Electric Periodic Structure in Space with Modulation in Time (2D+1)," Progress In Electromagnetics Research M, Vol. 104, 145-158, 2021.
doi:10.2528/PIERM21061707
http://www.jpier.org/PIERM/pier.php?paper=21061707

References


    1. Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Dover Publications, 1953.

    2. Kittel, C., Introduction to Solid State Physics, 8th Ed., Wiley, 2005.

    3. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Princeton University Press, 2008.

    4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2006.

    5. Pozar, D. M., Microwave Engineering, Wiley, 2012.

    6. Momeni, O. and E. Afshari, "Electrical prism: A high quality factor filter for millimeter-wave and terahertz frequencies," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 11, 2790-2799, 2009.
    doi:10.1109/TMTT.2009.2032343

    7. Afshari, E., H. S. Bhat, A. Hajimiri, and J. E. Marsden, "Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines," J. Appl. Phys., Vol. 99, 054901, 2006.
    doi:10.1063/1.2174126

    8. Lilis, G. N., J. Park, W. Lee, G. Li, H. S. Bhat, and E. Afshari, "Harmonic generation using nonlinear LC lattices," IEEE Trans. Microw. Theory Techn., Vol. 588, 1713-1723, 2010.
    doi:10.1109/TMTT.2010.2049678

    9. Bhat, H. S. and E. Afshari, "Nonlinear constructive interference in electrical lattices," Phys. Rev. E, Vol. 77, 066602, 2008.
    doi:10.1103/PhysRevE.77.066602

    10. Tousi, Y. M. and E. Afshari, "2-D electrical interferometer: A novel high-speed quantizer," IEEE Trans. Microw. Theory Techn., Vol. 58, 2549-2561, 2010.
    doi:10.1109/TMTT.2010.2063830

    11. Lee, W., M. Adnan, O. Momeni, and E. Afshari, "A nonlinear lattice for high-amplitude picosecond pulse generation in CMOS," IEEE Trans. Microw. Theory Techn., Vol. 60, 370-380, 2012.
    doi:10.1109/TMTT.2011.2178255

    12. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," 2002 IEEE MTT-S International Microwave Symposium Digest, 1067-1070, 2002.

    13. Eleftheriades, G. V., A. K. Iyer, P. C. Kremer, and , "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Techn., Vol. 50, 2702-2712, 2002.
    doi:10.1109/TMTT.2002.805197

    14. Milford, G. N. and G. V. Eleftheriades, "2D multiplier with left-handed focusing lens for terahertz signal generation," 2013 IEEE Antennas and Propagation Society International Symposium, 1182-1183, 2013.

    15. Algredo-Badillo, U. and P. Halevi, "Negative refraction and focusing in magnetically coupled L-C loaded transmission lines," J. Appl. Phys., Vol. 102, 086104, 2007.
    doi:10.1063/1.2794558

    16. Eleftheriades, G. V. and O. F. Siddiqui, "Negative refraction and focusing in hyperbolic transmission-line periodic grids," IEEE Trans. Microw. Theory Techn., Vol. 53, 396-403, 2005.
    doi:10.1109/TMTT.2004.839944

    17. Zurita-Sánchez, J. R., P. Halevi, and J. C. Cervantes-González, "Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t)," Phys. Rev. A, Vol. 79, 053821, 2009.
    doi:10.1103/PhysRevA.79.053821

    18. Zurita-Sánchez, J. R. and P. Halevi, "Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t)," Phys. Rev. A, Vol. 81, 053834, 2010.
    doi:10.1103/PhysRevA.81.053834

    19. Martínez-Romero, J. S., O. M. Becerra-Fuentes, and P. Halevi, "Temporal photonic crystals with modulations of both permittivity and permeability," Phys. Rev. A, Vol. 93, 063813, 2016.
    doi:10.1103/PhysRevA.93.063813

    20. Martínez-Romero, J. S. and P. Halevi, "Parametric resonances in a temporal photonic crystal slab," Phys. Rev. A, Vol. 98, 053852, 2018.
    doi:10.1103/PhysRevA.98.053852

    21. Reyes-Ayona, J. R. and P. Halevi, "Observation of genuine wave vector (k or β) gap in a dynamic transmission line and temporal photonic crystals," Appl. Phys. Lett., Vol. 107, 2015.

    22. Reyes-Ayona, J. R. and P. Halevi, "Electromagnetic wave propagation in an externally modulated low-pass transmission line," IEEE Trans. Microw. Theory Techn., Vol. 64, 3449-3459, 2016.
    doi:10.1109/TMTT.2016.2604319

    23. Halevi, P., U. Algredo-Badillo, and J. R. Zurita-Sánchez, "Optical response of a slab with time-periodic dielectric function ε(t): Towards a dynamic metamaterial," Active Photonic Materials IV, 61-75, 2011.

    24. Mohammad-Ali, M. and A. Alù, "Exceptional points in optics and photonics," Science, Vol. 363, No. 6422, 2019.
    doi:10.1126/science.aat3158

    25. Marsden, J. E. and A. J. Tromba, Vector Calculus, Pearson, 2004.

    26. Yakovlev, A. B. and G. W. Hanson, "On the nature of critical points in leakage regimes of a conductor-backed coplanar strip line," IEEE Trans. Microw. Theory Techn., Vol. 45, No. 1, 87-94, 1997.
    doi:10.1109/22.552036

    27. Miller, J. L., "Exceptional points make for exceptional sensors," Phys. Today, Vol. 70, No. 10, 23-26, 2017.
    doi:10.1063/PT.3.3717

    28. Seyranian, A. P., O. N. Kirillov, and A. A. Mailybaev, "Coupling of eigenvalues of complex matrices at diabolic and exceptional points," J. Phys. A, Vol. 38, 1723-1740, 2005.
    doi:10.1088/0305-4470/38/8/009

    29. Heiss, W. D., "The physics of exceptional points," J. Phys. A, Vol. 45, 444016, 2012.
    doi:10.1088/1751-8113/45/44/444016

    30. Chen, W., S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, 192-196, 2017.
    doi:10.1038/nature23281

    31. Hodaei, H., A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Enhanced sensitivity at higher-order exceptional points," Nature, Vol. 548, 1476-4687, 2017.

    32. El-Ganainy, R., K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys., Vol. 14, 1745-2481, 2018.

    33. Kazemi, H., Y. N. Mohamed, M. Tarek, F. Ahmed, and C. Filippo, "Exceptional points of degeneracy induced by linear time-periodic variation," Phys. Rev. Applied, Vol. 11, 14007, 2019.
    doi:10.1103/PhysRevApplied.11.014007

    34. Berry, M. V. and M. Wilkinson, "Diabolical points in the spectra of triangles," Proc. R. Soc. A, Vol. 392, 15-43, 1984.

    35. Dubbers, D. and H.-J. Stöckmann, Quantum Physics: The Bottom-up Approach, Springer, 2013.
    doi:10.1007/978-3-642-31060-7