Vol. 111
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-18
Maximum Torque Output Strategy of Bearingless Induction Motor in the Field-Weakening Region
By
Progress In Electromagnetics Research M, Vol. 111, 221-234, 2022
Abstract
In order to realize the maximum torque output (MTO) in the field-weakening region for the bearingless induction motor (BIM) stator vector control, a flux feedforward control strategy was proposed. Firstly, based on the restrictions of the stator flux oriented control and the dynamic characteristics of the current in the BIM field-weakening region, the optimal distribution of the torque current and the excitation current and the dynamic model of the maximum torque output strategy are analyzed. Then the field-weakening region could be divided into two parts according to the change of slip, it can be proved that the BIM works under the voltage and current limitations in the field-weakening region I, and works under the voltage and torque limitations in the field-weakening region II. By this way, the optimal flux mathematical model of the motor can be obtained. Finally, the maximum torque output in the field-weakening region is proved. The simulation and experiment results show that the proposed flux feedforward control strategy in the field-weakening region can make the output torque and current tracking effect improve significantly when the BIM runs beyond the rated speed. At the same time, the suspended rotor has good suspension performance, and high efficiency and stability of the BIM is realized.
Citation
Wenxin Fang, Zebin Yang, Xiaodong Sun, and Guangxin Wang, "Maximum Torque Output Strategy of Bearingless Induction Motor in the Field-Weakening Region," Progress In Electromagnetics Research M, Vol. 111, 221-234, 2022.
doi:10.2528/PIERM22051702
References

1. Noh, M. and D. L. Trumper, "Homopolar bearingless slice motor with flux-biasing Halbach arrays," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7757-7766, 2020.
doi:10.1109/TIE.2019.2942512

2. Sun, X. D., Z. J. Jin, Y. F. Cai, Z. B. Yang, and L. Chen, "Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine," IEEE Transactions on Power Electronics, Vol. 35, No. 12, 13631-13640, 2020.
doi:10.1109/TPEL.2020.2994254

3. Liu, G., Z. Ma, H. Zhu, J. Sun, and J. Huan, "Multi-objective optimization and analysis of six-pole outer rotor hybrid magnetic bearing," Progress In Electromagnetics Research C, Vol. 119, 97-114, 2022.
doi:10.2528/PIERC22010601

4. Yang, Z. B., C. L. Lu, X. D. Sun, J. L. Ji, and Q. F. Ding, "Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization-genetic algorithm," IEEE Transactions on Transportation Electrification, Vol. 7, No. 2, 694-705, 2021.
doi:10.1109/TTE.2020.3031338

5. Wang, H. J. and F. X. Li, "Design consideration and characteristic investigation of modular permanent magnet bearingless switched reluctance motor," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4326-4337, 2020.
doi:10.1109/TIE.2019.2931218

6. Yang, Z. B., Q. F. Ding, X. D. Sun, and C. L. Lu, "Design and analysis of a three-speed wound bearingless induction motor," IEEE Transactions on Industrial Electronics, 2021, doi: 10.1109/TIE.2021.3128900.

7. Jin, Z. J., X. D. Sun, and Z. B. Yang, "A novel four degree-of-freedoms bearingless permanent magnet machine using modified cross feedback control scheme for flywheel energy storage systems," International Journal of Applied Electromagnetics and Mechanics, Vol. 60, No. 3, 379-392, 2019.
doi:10.3233/JAE-180115

8. Bu, W. S., F. Zhang, F. Z. He, L. G. Sun, and Y. K. Qiao, "Neural network inverse system decoupling fuzzy self-tuning proportional-derivative control strategy of a bearingless induction motor," Proceedings of The Institution of Mechanical Engineers. Part I --- Journal of Systems and Control Engineering, Vol. 235, No. 7, 1113-1124, 2021.

9. Xu, T., Z. Yang, X. Sun, and J. Jia, "Electromagnetic property analysis of a bearingless induction motor using amorphous alloy material," Progress In Electromagnetics Research M, Vol. 104, 49-59, 2021.
doi:10.2528/PIERM21062601

10. Sinervo, A. and A. Arkkio, "Rotor radial position control and its effect on the total efficiency of a bearingless induction motor with a cage rotor," IEEE Transactions on Magnetics, Vol. 50, No. 4, 1-9, 2014.
doi:10.1109/TMAG.2013.2291224

11. Yang, Z. B., Q. F. Ding, X. D. Sun, H. M. Zhu, and C. L. Lu, "Fractional-order sliding mode control for a bearingless induction motor based on improved load torque observer," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 358, No. 7, 3701-3725, 2021.
doi:10.1016/j.jfranklin.2021.03.006

12. Yao, H., Y. Yan, T. N. Shi, G. Z. Zhang, Z. Q. Wang, and C. L. Xia, "A novel SVPWM scheme for field-oriented vector-controlled PMSM drive system fed by cascaded H-bridge inverter," IEEE Transactions on Power Electronics, Vol. 36, No. 5, 8988-9000, 2021.
doi:10.1109/TPEL.2021.3054642

13. Sun, X. D., B. K. Su, L. Chen, and Z. B. Yang, "Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct- driven spindle using neural network inverse scheme," Mechanical Systems and Signal Processing, Vol. 88, 36-48, 2017.
doi:10.1016/j.ymssp.2016.11.022

14. Khoury, G., R. Ghosn, F. Khatounian, M. Fadel, and M. Tientcheu, "Energy-efficient field-oriented control for induction motors taking core losses into account," Electrical Engineering, 2021, doi: 10.1007/s00202-021-01321-6.

15. Zhang, X., B. Wang, Y. Yu, J. Zhang, J. X. Dong, and D. G. Xu, "Analysis and optimization of current dynamic control in induction motor field-weakening region," IEEE Transactions on Power Electronics, Vol. 35, No. 9, 8860-8866, 2020.
doi:10.1109/TPEL.2020.2968978

16. Zhang, W. W., F. Xiao, J. L. Liu, Z. Q. Mai, and C. R. Li, "Optimization of maximum torque output in the wide speed range of a PMSM traction control system," Journal of Power Electronics, Vol. 20, No. 1, 152-162, 2020.
doi:10.1007/s43236-019-00008-3

17. Feng, G. D., C. Y. Lai, Y. Han, and N. C. Kar, "Fast maximum torque per ampere (MTPA) angle detection for interior PMSMs using online polynomial curve fitting," IEEE Transactions on Power Electronics, Vol. 37, No. 2, 2045-2056, 2022.

18. Xie, F., C. M. Qiu, and Z. Qian, "Optimal speed-torque control of asynchronous motor for electric cars in the field-weakening region based on voltage vector optimization," IEEE Transactions on Power Electronics, Vol. 37, No. 1, 830-842, 2022.
doi:10.1109/TPEL.2021.3097906

19. Gashtil, H., V. Pickert, D. J. Atkinson, M. Dahidah, and D. Giaouris, "Improved voltage boundary with model-based control algorithm for increased torque in the field weakening region of induction machines," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1600-1614, 2021.
doi:10.1109/TTE.2020.3048306

20. Wang, B., J. Zhang, Y. Yu, X. Zhang, and D. G. Xu, "Unified complex vector field-weakening control for induction motor high-speed drives," IEEE Transactions on Power Electronics, Vol. 36, No. 6, 7000-7011, 2021.
doi:10.1109/TPEL.2020.3034246

21. Zhang, X. A., G. H. B. Foo, and M. F. Rahman, "A Robust field-weakening approach for direct torque and flux controlled reluctance synchronous motors with extended constant power speed region," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1813-1823, 2020.
doi:10.1109/TIE.2019.2903760

22. Yu, Z. Y., C. Gan, K. Ni, R. H. Qu, and W. B. Kong, "Dual three-phase flux-modulated switched reluctance motor drive with maximum torque per ampere strategy," IEEE Transactions on Industry Applications, Vol. 57, No. 6, 5806-5817, 2021.
doi:10.1109/TIA.2021.3102885

23. Levi, E. and M. Y. Wang, "A speed estimator for high performance sensorless control of induction motors in the field weakening region," IEEE Transactions on Power Electronics, Vol. 17, No. 3, 365-378, 2002.
doi:10.1109/TPEL.2002.1004244

24. Jo, G. J. and J. W. Choi, "Robust voltage model flux estimator design with parallel vector compensator for sensorless drive of induction motors," Journal of Power Electronics, Vol. 21, No. 1, 126-141, 2021.
doi:10.1007/s43236-020-00149-w

25. Wang, Z. Y., W. Sun, and D. Jiang, "Stability analysis and trajectory design of a nonlinear switching system for speed sensorless induction motor drive," IEEE Transactions on Industrial Electronics, Vol. 69, No. 6, 5514-5524, 2022.
doi:10.1109/TIE.2021.3086712

26. Sun, X. D., L. Chen, and H. B. Jiang, "High-performance control for a bearingless permanent- magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3479-3488, 2016.
doi:10.1109/TIE.2016.2530040

27. Wang, C., A. Jaidaa, Z. Wang, and L. Lu, "An effective decoupling control with simple structure for induction motor drive system considering digital delay," Electronics, 2021, doi: 10.3390/electronics10233048.

28. Han, Y. F., X. Q. Wu, G. F. He, Y. H. Hu, and K. Ni, "Nonlinear magnetic field vector control with dynamic-variant parameters for high-power electrically excited synchronous motor," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 11053-11063, 2020.
doi:10.1109/TPEL.2020.2977390

29. Ye, X. T., Z. B. Yang, and T. Zhang, "Modelling and performance analysis on a bearingless fixed-pole rotor induction motor," IET Electric Power Applications, Vol. 13, No. 2, 251-258, 2019.
doi:10.1049/iet-epa.2018.5296

30. Martinez, J., A. Belahcen, and J. G. Detoni, "A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors," Mechanical Systems and Signal Processing, Vol. 66-67, 640-656, 2016.
doi:10.1016/j.ymssp.2015.06.014

31. Markovic, N., S. Bjelic, F. Markovic, M. Markovic, and S. Jovic, "Theoretical method for determination of the impact of parasitic torques from the equivalent scheme of induction machines fed by PWM inverter," Measurement, 2021, doi: 10.1016/j.measurement.2020.108344.

32. Sun, X. D., L. Chen, and Z. B. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 60, No. 12, 5528-5538, 2013.
doi:10.1109/TIE.2012.2232253