Vol. 1
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-02
The Classical Structure Model of Single Photon and Classical Point of View with Regard to Wave-Particle Duality of Photon
By
Progress In Electromagnetics Research Letters, Vol. 1, 109-118, 2008
Abstract
The enigma of the wave-particle duality of photon has remained unimpressively explained for a century since Einstein presents the concept of the photon in 1905. This article establishes a classical geometric structure model of a single photon based on field matter, educes a formula for the size of a photon; assumes that there only are two kinds of photon of right hand and left hand circular polarized, and suggests the frequency ω of photon polarization rotated to be its spin frequency. It ascribes the wavelike of photon to its spin motion and the particle-like to its translation motion. From the point of photon particle instead of wave view to re-analyze Young's double-slit interference and polarizer experiments, gives reasonable mechanism. It defines the phase velocity and the group velocity of a photon. It gives a unified and consistent understanding of quantum particle of light and classical electromagnetic waves field. Evidently, such a precisely defined conceptual model is reasonable, objective and easy to accept for classical physicists.
Citation
Dong-Lin Zu, "The Classical Structure Model of Single Photon and Classical Point of View with Regard to Wave-Particle Duality of Photon," Progress In Electromagnetics Research Letters, Vol. 1, 109-118, 2008.
doi:10.2528/PIERL07111101
References

1. Perkowitz, S., Empire of Light, Joseph Henry Press, Washington D.C., 1998.

2. Taylor, G. I., "Interference fringes with feeble light," Proc. Cambridge Philos. Society, Vol. 15, No. 114, 1909.

3. Grangier, P., G. Roger, and A. Aspect, "Experimental evidence for a photon anticorrelation effect on a beamsplitter: A new light on single-photon interferences," Europhysics Letters, Vol. 1, 173-179, 1986.
doi:10.1209/0295-5075/1/4/004

4. Wang, K., J. Xiong, and L. Gao, "From Han bury-Brown and Twiss experiment to the second-order double-slit interference for incoherent light," Front. Phys., Vol. 1, 54-66, China, 2006.
doi:10.1007/s11467-005-0017-1

5. Feynman, R.-P., R.-B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 3, No. 1, Reading, Addison-Wesley, MA, 1965.

6. Berestetskii, V. B., E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd Edition, Pergamon Press Ltd., 1982.

7. Gupta, S. N., Quantum Electrodynamics, Gordon and Breach Science Publishers, 1977.

8. Feynm, R. P., R. D. Leighton, and M. Sinds, Feyman Lectures on Physics, Vol. 1, 19-7, Table 19-1, Iddnson Wesley, 1963, 1975.

9. Bohm, D., "A suggested interpretation of the quantum theory in terms of ‘hidden’ variables," Phys. Rev., Vol. 85, No. 2, 166-193, 1952.
doi:10.1103/PhysRev.85.166

10. Fayer, M. D., Elements of Quantum Mechanics, 1-5, Oxford University Press, 2001.

11. Zeng, J. Y., Quantum Mechanics, Science Press, Beijing, 1982.