Vol. 1
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-19
Microstrip Antenna Using Ground-Cut Slots and Miniaturization Techniques with Low RCS
By
Progress In Electromagnetics Research Letters, Vol. 1, 211-220, 2008
Abstract
The techniques of ground-cut slots and miniaturization are applied in the design of microstrip antenna which reduces the resonance frequency and size of antenna and achieves the Radar Cross Section (RCS) reduction. Compared with the rectangular patch antenna working at the same frequency, the designed antenna realizes the RCS reduction in the whole frequency band of 2-8 GHz. And the RCS can be reduced 2-4 dB at its working frequency. The RCSp eaks are efficiently controlled to get a smooth curve while the gain loss is only approximately 0.9 dB, which assures the radiation performance. The measured results of radiation performance accord with the simulation results and it implies that this method is feasible.
Citation
Yan Li, Ying Liu, and Shu-Xi Gong, "Microstrip Antenna Using Ground-Cut Slots and Miniaturization Techniques with Low RCS," Progress In Electromagnetics Research Letters, Vol. 1, 211-220, 2008.
doi:
References

1. Sayem, A. M. and M. Ali, "Characteristics of a microstripfed miniature printed hilbert slot antenna," Progress In Electromagnetics Research, Vol. 56, 1-18, 2006.
doi:10.2528/PIER05041801

2. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.
doi:10.2528/PIER06081401

3. Donelli, M., S. Caorsi, F. DeNatale, M. Pastorino, and A. Massa, "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301

4. Newman, H., "Scattering from a microstrip patch," IEEE Transaction on Antenna and Propagation, Vol. AP-35, No. 3, 245-251, March 1987.
doi:10.1109/TAP.1987.1144084

5. Pozar, D. M., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Transaction on Antenna and Propagation, Vol. AP-35, No. 6, 613-621, June 1987.
doi:10.1109/TAP.1987.1144161

6. King, A. S., "Scattering from a finite array of microstrip patches," IEEE Transaction on Antenna and Propagation, Vol. AP-40, No. 7, 770-774, 1992.
doi:10.1109/8.155741

7. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangular patch by using distributed loading," Electron Lett., Vol. 28, No. 25, 2322-2323, 1992.

8. Aberle, J. T., M. Chu, and C. R. Birtcher, "Scattering and radiation properties of varactor-tuned microstrip antennas," Antennas Propagat. Soc. Int. Symp. Dig., Vol. 4, 2229-2232, 1992.
doi:10.1109/APS.1992.221421

9. Pozar, D. M., "Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrates," IEEE Trans. Antennas Propagation, Vol. AP-40, No. 9, 1084-1092, 1992.
doi:10.1109/8.166534

10. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

11. Liu, Y., S. Gong, H. Guo, and D. Fu, "Fractal microstrip patch antenna for antenna RCS reduction," Acta Electronica Sinica, Vol. 32, 1530-1531, 2004.

12. He, X., S. Gong, Y. Ji, and Q. Liu, "Meshed microstrip patch antennas with low RCS," Microwave and Optical Technology Letters, Vol. 46, 117-120, 2006.

13. Wan, J. X. and C.-H. Liang, "A fast analysis of scattering from microstrip antennas over a wide band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801

14. Saed, M. A., "Broadband cpw-few planar slot antennas with various tuning stubs," Progress In Electromagnetics Research, Vol. 66, 199-212, 2006.
doi:10.2528/PIER06112703

15. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Rectangular slot antenna with patch stub for ultra wideband applications and phased array systems," Progress In Electromagnetics Research, Vol. 53, 227-237, 2005.
doi:10.2528/PIER04092701