Vol. 3
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-02-06
Analysis of Capasitively Coupled Microstrip-Ring Resonator Based on Spectral Domain Method
By
Progress In Electromagnetics Research Letters, Vol. 3, 25-33, 2008
Abstract
In this paper, full-wave analysis of a microstrip-ring resonator capacitively coupled to Microstrip transmission line is presented. The method of the analysis is based on spectral domain in rectangular coordinate system. Since this coordinate system is not compatible with ring structure, triangular basis functions have been utilized for the current distributions on the ring surface. Applying Galerkin's method in spectral domain, the resonant frequencies of the structure and current distributions on the conductors are calculated and the effects of various parameters are studied. To verify the method of analysis, our results are compared with others and the accuracy of the method has been confirmed.
Citation
Reza Rezaiesarlak, Farrokh Hojjat-Kashani, and Esfandiar Mehrshahi, "Analysis of Capasitively Coupled Microstrip-Ring Resonator Based on Spectral Domain Method," Progress In Electromagnetics Research Letters, Vol. 3, 25-33, 2008.
doi:10.2528/PIERL08012504
References

1. Chang, K., Microwave Ring Circuits and Antennas, John Wiley & Sons, 1996.

2. Wolff, I. and N. Koppik, "Microstrip ring resonator and dispersion measurement on microstrip lines," Electron Lett., Vol. 7, No. 26, 779-781, Dec. 1971.
doi:10.1049/el:19710532

3. Edwards, C., "Microstrip measurements," IEEE MTT-S Int. Microwave Symp. Dig., 338-341, Dallas, TX,1982.

4. Bernard, P. A. and J. M. Gautray., "Measurement of dielectric constant using a microstrip ring resonator," IEEE Trans. Microwave Theory Tech., Vol. 39, 592-595, 1991.
doi:10.1109/22.75310

5. Stephenson, I. M. and B. Easter, "Resonant techniques for establishing the equivalent circuits of small discontinuities in microstrip," Electron Lett., No. 7, 582-584, 1971.
doi:10.1049/el:19710393

6. Hoefer, W. J. R. and A. Chattopadhyay, "Evaluation of the equivalent circuit parameters of microstrip discontinuities through perturbation of a resonant ring," IEEE Trans. Microwave Theory Tech., Vol. 23, 1067-1071, 1975.
doi:10.1109/TMTT.1975.1128746

7. Sarabandi, K. and E. S. Li, "Microstrip ring resonator for soil moisture measurements," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 5, 1997.

8. Wu, Q. S, Q. Xue, and C. H. Chan, "Bandpass filter using microstrip ring resonators," Electron. Lett., Vol. 39, No. 1, 62-64, 2003.
doi:10.1049/el:20030035

9. Jovanovic, S. and A. Nesic, "Microstrip bandpass filter with new type of capacitive coupled resonator," Electronic Letters, Vol. 41, No. 1, 12-13, 2005.
doi:10.1049/el:20057267

10. Prabhu, S. and J. S. Mandeep, "Microstrip bandpass filter at S-band using capacitive coupled resonator," Progress In Electromagnetics Research, Vol. 76, 223-228, 2007.
doi:10.2528/PIER07071205

11. Bhasin, K. B., C. M. Chorey, J. D. Warner, R. R. Romanofsky, V. O. Heinen, K. S. Kong, H. Y. Lee, and T. Itoh, "Performance and modeling of superconducting ring resonators at millimeterwave frequencies," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, Part 1, 269-272, Dallas, TX, 1990.

12. Miranda, A., F. W. van Keuls, R. R. Romanofsky, and G. Subramanyam, "Tunable microwave components for Ku and Kband satellite communications," Proc 10th Int. Symp. Integrated Ferroelectron, Vol. 22, Part 2, 269-278, Monterey, CA, 1998.

13. Allen, C. A., K. M. K. H. Leong, and T. Itoh, "Dual-mode composite-right/left-handed transmission line ring resonator," Electron Lett., Vol. 42, 2006.

14. Lee, S. W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of metamaterials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.
doi:10.2528/PIER04020602

15. Sharma, A. K. and B. Bhat, "Spectral domain analysis of microstrip ring resonators," AEU, Vol. 33, 130-132, 1979.

16. Ali, S., W. C. Chew, and J. A. Kong, "Vector hankel transform analysis of annular-ring microstrip antenna," IEEE Trans. on Antenna and Propagation, Vol. 30, No. 4, July 1982.

17. Semouchkina, E., W. Cao, R. Mittra, and W. Yu, "Analysis of resonance processes in microstrip ring resonators by the FDTD method," Microw. and Opt. Techn. Lett., Vol. 28, No. 5, 2001.

18. Semouchkina, E., W. Cao, and R. Mittra, "Modeling of microwave ring resonator using the finite-difference-time-domain (FDTD) method," Microw. and Opt. Techn. Lett., Vol. 24, No. 6, 2000.

19. Yu, C. C. and K. Chang, "Transmission-line analysis of a capacitively coupled microstrip-ring resonator," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 11, 1997.

20. Itoh, T., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, Wiley, New York, 1989.

21. Itoh, T., "Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines ," IEEE Trans. Microwave Theory Tech., Vol. 8, No. 7, 733-736, 1980.
doi:10.1109/TMTT.1980.1130158

22. Tran, A. M., B. Houshmand, and T. Itoh, "Analysis of electromagnetic coupling through a thick aperture in multilayer planar circuits using the extended spectral domain approach and finite difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 9, 1995.

23. Wu, S. C., H. Y. Yang, N. G. Alexopoulos, and I.Wolf, "A rigorous dispersive characteristization of microstrip cross and T junction," IEEE Trans. Microwave Theory and Thech., Vol. 38, No. 12, 1990.