1. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, 260-266, 1987.
doi:10.1109/TMTT.1987.1133637 Google Scholar
2. Carlsson, E. and S. Gevorgian, "Conformal mapping of the field and charge distributions in multilayered substrate CPWs," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1544-1552, 1999.
doi:10.1109/22.780407 Google Scholar
3. Bedair, S. S. and I. Wolff, "Fast, accurate and simple approximate analysis formulas for calculating the parameters of supported coplanar waveguides for (M)MIC’s," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 41-48, 1992.
doi:10.1109/22.108321 Google Scholar
4. Gevorgian, S. S., "Basic characteristics of two layered substrate coplanar waveguides," Electron. Letters, Vol. 30, 1236-1237, 1994.
doi:10.1049/el:19940861 Google Scholar
5. Wen, C. P., "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105 Google Scholar
6. Chen, E. and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 939-945, 1997.
doi:10.1109/22.588606 Google Scholar
7. Cheng, K. K. M. and I. D. Robertson, "Numerically efficient spectral domain approach to the quasi-TEM analysis of supported coplanar waveguide structures: Modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1958-1965, 1994.
doi:10.1109/22.320780 Google Scholar
8. Shigesawa, H. and M. Tsuji, "Conductor-backed slot line and coplanar waveguide: Dangers and full-wave analysis," IEEE MTT-S Dig., 199-202, 1988. Google Scholar
9. Aksun, M. I. and H. Morkoc, "GaAs on Si as a substrate for microwave and millimeter-wave monolithic integration," IEEE Transactions Microwave Theory Techniques, Vol. 36, 160-163, 1988.
doi:10.1109/22.3500 Google Scholar
10. Knorr, J. B. and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624 Google Scholar
11. Davies, J. B. and D. M. Syahkal, "Spectral domain solution of arbitrary coplanar transmission lines with multilayer substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, 143-149, 1977.
doi:10.1109/22.76444 Google Scholar
12. Chang, C. N., W. C. Chang, and C. H. Chen, "Full-wave analysis of multilayer coplanar lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 747-750, 1991. Google Scholar
13. Schroeder, W. and I. Wolff, "Full-wave analysis of the influence of conductor shape and structure details on losses in coplanar waveguide," Microwave Symposium Digest, IEEE MTT-S International, Vol. 3, 1273-1276, 1995. Google Scholar
14. Jansen, R., "Hybrid mode analysis of end effects of planar microwave and millimeter wave transmission line," IEE Proceedings, Part H-Microwaves, Optics and Antennas, Vol. 128, 77-86, 1981.
doi:10.1109/TMTT.1969.1126946 Google Scholar
15. Hilberg, W., "From approximations to exact relations for characteristic impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 259-265, 1969.
doi:10.1109/21.256541 Google Scholar
16. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans Systems Man and Cybernetics, Vol. 23, 665-685, 1993. Google Scholar
17. Jang, J.-S. R., C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, 1997.
18. Brown, M. and C. Haris, Neuro-Fuzzy Adaptive Modeling and Control, Prentice-Hall, 1994.
19. Constantin, V. A., Fuzzy Logic and Neuro-Fuzzy Applications Explained, Prentice-Hall, 1995.
20. Lin, C. T. and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice-Hall, 1996.
doi:10.1163/156939304322749599
21. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates," Journal of Electromagnetic Waves and Applications, Vol. 18, 23-39, 2004.
doi:10.1109/LMWC.2005.863245 Google Scholar
22. Rahouyi, E. B., J. Hinojosa, and J. Garrigos, "Neuro-fuzzy inference modeling techniques for microwave components," IEEE Microwave and Wireless Components Letters, Vol. 16, 72-74, 2006. Google Scholar
23. AC Microwave’s MMICTL in Linmic Interconnect, Version 3, www.linmic.com, 2006.
doi:10.1049/el:19730261
24. Dupuis, P. A. J. and C. K. Campbell, "Characteristic impedance of surface-strip coplanar waveguides," Electron. Letters, Vol. 9, 354-355, 1973.
doi:10.1049/el:19790065 Google Scholar
25. Becker, J. P. and D. Jager, "Electrical properties of coplanar transmission lines on lossless and lossy substrate," Electron. Letters, Vol. 15, 88-90, 1979. Google Scholar
26. Riad, A. A., S. M. Riad, M. Ahmad, F. W. Stephenson, and R. A. Ecker, "Thick-film coplanar strip and slot lines for microwave and wideband integrated circuits," Int. Microelectronics Symp. Dig., 8-21, Reno, Nevada, November 15-17 1982. Google Scholar