Vol. 3
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-04-09
A Novel Compact Archimedean Spiral Antenna with Gap-Loading
By
Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008
Abstract
A novel compact Archimedean spiral antenna with gaploading is investigated in this paper. A circular frame sharing the same centre with the spiral elements introduces a capacitive gap. By adjusting the width of the gap and the width of the circular frame, the initial resonant frequency of the proposed antenna is shifted from 2.79 to 1.93 GHz. Compared with the traditional Archimedean spiral antenna with the same lowest operation frequency, the area of the proposed antenna can be reduced by more than 30simulated radiation pattern results.
Citation
Qing Liu, Cheng-Li Ruan, Lin Peng, and Wei-Xia Wu, "A Novel Compact Archimedean Spiral Antenna with Gap-Loading," Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008.
doi:10.2528/PIERL08032002
References

1. Zaker, R., Ch. Ghobadi, and J. Nourinia, "A modified microstripfed two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

2. Sadat, S. and M. Houshmand, "Design of a microstrip squarering slot antenna filled by an h-shape slot for UWB," Progress In Electromagnetics Research, Vol. 70, 191-198, 2007.
doi:10.2528/PIER07012002

3. Wang, F. J. and J. S. Zhang, "Wide band cavity-backed patch antenna for PCS/IMI2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801

4. Turner, E. M, Spiral slot antenna, WADC, Aerial Reconnaissance Laboratory, Project 4341, Technical note WCLR 55-8, June 1955.

5. Wang, J. J. H., "The spiral as a traveling wave structure for broadband antenna applications," Electromagnetics, 20-40, July-August 2000.

6. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901

7. Sayem, A. T. M. and M. Ali, "Characteristics of a microstripfed miniature printed hilbert slot antenna," Progress In Electromagnetics Research, Vol. 56, 1-18, 2006.
doi:10.2528/PIER05041801

8. Sadat, S., M. Fardis, F. Geran, and G. Dadashzadeh, "A compact microstirp square-ring slot antenna for UWB application," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901

9. Saed, M. and R. Yadla, "Microstrip-fed low profile and compact dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 56, 151-162, 2006.
doi:10.2528/PIER05041401

10. Zhao, G., F. S. Zhang, Y. Song, Z. B. Weng, and Y. C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4/5GHz dual-band operation," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06121902

11. Naghshvarian-Jahromi, M., "Compact UWB bandnotch antenna with transmission-line-fed," Progress In Electromagnetics Research B, Vol. 3, 283-293, 2008.
doi:10.2528/PIERB07121407

12. Hosseini, S. A., Z. Atlasbaf, and K. Forooraghi, "Two new loaded compact planar ultra-band antennas using defected ground structures ," Progress In Electromagnetics Research B, Vol. 2, 165-176, 2008.
doi:10.2528/PIERB07111802

13. Jolani, F. and A. M. Dadgarpour, "Compact m-slot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERL08012801

14. Lee M., B. A. Kramer, C.-C. Chen, and J. L. Volakis, "Broadband spiral antenna miniaturization limit," Proc. IEEE Antennas and Propagation Society Int. Symp., 3701-3704, July 2006.

15. Li, R. L., E. M. Tentzeris, J. Laskar, V. F. Fusco, and R. Cahill, "Broadband antenna for DCS-1800/IMT-2000 mobile phone handset," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, August 2002.
doi:10.1109/LMWC.2002.802031

16. Qu, S. W., C. L. Ruan, B. Z. Wang, and Q. Xue, "Planar bow-tie antenna embedded in circular aperture within conductive frame," IEEE Antennas Wireless Propag. Lett., Vol. 5, 2006.