Vol. 3
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-17
A Novel Design Approach for Erbium-Doped Fiber Amplifiers by Particle Swam Optimization
By
Progress In Electromagnetics Research M, Vol. 3, 103-118, 2008
Abstract
A novel design approach for erbium-doped fiber amplifiers is proposed based on particle swarm optimization algorithm. The main six parameters of the EDFAs including: pumping wavelength, input signal power, fiber numerical aperture, erbium-doped area radius, erbium concentration, and the fiber length are optimized utilizing a fast and efficient method called particle swarm optimization algorithm. In this paper, a combination of fiber amplifier bandwidth, gain, and flatness are taken into account as objective function and the results are presented for different pump powers. Our investigation shows that particle swarm optimization algorithm outperforms genetic algorithm in convergence speed, straightforwardness, and coping with highdimensional spaces, when the parameters of EDFA are to be optimized. It has been shown that the required time for the optimization of the fiber amplifier parameters is reduced four times by using particle swarm optimization algorithm, compared to genetic algorithm method.
Citation
Alireza Mowla, and Nosrat Granpayeh, "A Novel Design Approach for Erbium-Doped Fiber Amplifiers by Particle Swam Optimization," Progress In Electromagnetics Research M, Vol. 3, 103-118, 2008.
doi:10.2528/PIERM08061003
References

1. Giles, C. R. and E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightwave Technol., Vol. 9, No. 2, 271-283, 1991.
doi:10.1109/50.65886

2. Saleh, A. A. M., R. M. Jopson, J. D. Evankow, and J. Aspell, "Modeling of gain in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett., Vol. 2, No. 10, 714-717, 1990.
doi:10.1109/68.60769

3. Yeh, C. H., C. C. Lee, and S. Chi, "S- plus C-band erbium-doped fiber amplifier in parallel structure," Opt. Commun., Vol. 241, 443-447, 2004.
doi:10.1016/j.optcom.2004.07.018

4. Lu, Y. B., P. L. Chu, A. Alphones, and P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett., Vol. 16, No. 7, 1640-1642, 2004.
doi:10.1109/LPT.2004.827964

5. Yamada, M., A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett., Vol. 10, No. 9, 1244-1246, 1998.
doi:10.1109/68.705604

6. Ahn, J. T. and K. H. Kim, "All-optical gain-clamped erbiumdoped fiber amplifier with improved noise figure and freedom from relaxation oscillation," IEEE Photon. Technol. Lett., Vol. 16, No. 1, 84-86, 2004.
doi:10.1364/OPEX.13.004519

7. Yi, L. L., L. Zhan, C. S. Taung, S. Y. Luo, W. S. Hu, Y. K Su, and Y. X. Xia, "Low noise figure all-optical gain-clamped parallel C+L band erbium-doped fiber amplifier using an interleaver," Opt. Express, Vol. 13, No. 12, 4519-4524, 2005.
doi:10.1364/OPEX.14.000570

8. Yi, L. L., L. Zhan, W. S. Hu, Q. Tang, and Y. X. Xia, "Tunable gain-clamped double-pass erbium-doped fiber amplifier," Opt. Express, Vol. 14, No. 2, 570-574, 2006.
doi:10.1109/LPT.2004.823697

9. Yi, L. L., L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 16, No. 4, 1005-1007, 2004.
doi:10.1016/j.optcom.2004.06.023

10. Singh, R., Sunanda, and E. K. Sharma, "Gain flattening by long period gratings in erbium doped fibers," Opt. Commun., Vol. 240, 123-132, 2004.

11. Liang, T. C. and S. Hsu, "The L-band EDFA of high clamped gain and low noise figure implemented using fiber Bragg grating and double-pass method," Opt. Commun., Vol. 281, 1134-1139, 2007.
doi:10.1109/68.896325

12. Lu, Y. B. and P. L. Chu, "Gain flattening by using dual-core fiber in erbium-doped fiber amplifier," IEEE Photon. Technol. Lett., Vol. 12, No. 12, 1616-1617, 2000.
doi:10.1364/OE.15.001454

13. Hung, C. M., N. K.Chen, Y. Lai, and S. Chi, "Double-pass high-gain low-noise EDFA over S- and C+L-bands by tunable fundamental-mode leakage loss," Opt. Express, Vol. 15, No. 4, 1454-1460, 2007.
doi:10.1016/j.optcom.2006.06.025

14. Chang, C. L., L.Wang, and Y. J. Chiang, "A dual pumped doublepass L-band EDFA with high gain and low noise," Opt. Commun., Vol. 267, 108-112, 2006.
doi:10.1109/JQE.2003.817582

15. Choi, B. H., H. H. Park, and M. J. Chu, "New pumped wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA)," J. Quantum Electron., Vol. 39, No. 10, 1272-1280, 2003.
doi:10.1016/j.optcom.2007.01.039

16. Pal, M., M. C. Paul, A. Dhar, A. Pal, R. Sen, K. Dasgupta, and S. K. Bhadra, "Investigation of the optical gain and noise figure for multi-channel amplification in EDFA under optimized pump condition," Opt. Commun., Vol. 273, 407-412, 2007.
doi:10.1016/S0030-4018(01)01312-8

17. Martin, J. C., "Erbium transversal distribution influence on the effectiveness of a doped fiber: Optimization of its performance," Opt. Commun., Vol. 194, 331-339, 2001.
doi:10.1016/j.optcom.2005.05.049

18. Cheng, C. and M. Xiao, "Optimization of an erbium-doped fiber amplifier with radial effects," Opt. Commun., Vol. 254, 215-222, 2005.
doi:10.1109/JLT.2006.881476

19. Cheng, C. and M. Xiao, "Optimization of a dual pumped L-band erbium-doped fiber amplifier by genetic algorithm," J. Lightwave Technol., Vol. 24, No. 10, 3824-3829, 2006.
doi:10.1016/j.optcom.2003.09.055

20. Cheng, C., Z. Xu, and C. Sui, "A novel design method: A genetic algorithm applied to an erbium-doped fiber amplifier," Opt. Commun., Vol. 227, 371-382, 2003.
doi:10.1016/j.optlastec.2004.01.006

21. Cheng, C., "A global design of an erbium-doped fiber and an erbium-doped fiber amplifier," Opt. LaserT echnol., Vol. 36, 607-612, 2004.
doi:10.2528/PIER02062602

22. Yau, D. and S. Crozier, "A genetic algorithm/method of moments approach to the optimization of an RF coil for MRI applications-theoretical considerations," Progress In Electromagnetics Research, Vol. 39, 177-192, 2003.
doi:10.2528/PIER03090501

23. Lucci, L., R. Nesti, G. Pelosi, and S. Selleri, "Phase centre optimization in profiled corrugated circulator horns with parallel genetic algorithms," Progress In Electromagnetics Research, Vol. 46, 127-142, 2004.
doi:10.2528/PIER07031506

24. Meng, Z. Q., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIERB08010605

25. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.

26. Zhai, Y. W., X. W. Shi, and Y. J. Zhao, "Optimized design of ideal and actual transformer based on improved micro-genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 21, No. 13, 1761-1771, 2007.
doi:10.1163/156939306779292264

27. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried object using parallel genetic algorithm combined with FDTD technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306776143370

28. Lu, Y. Q. and J. Y. Li, "Optimization of broadband top-load antenna using micro-genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 6, 793-801, 2006.
doi:10.1163/156939306776117090

29. Tian, Y. B. and J. Qian, "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306775701696

30. Tu, T. C. and C. C. Chiu, "Path loss reduction in an urban area by genetic algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 3, 319-330, 2006.

31. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, Chap. 2, 3, 2004.
doi:10.1364/OPEX.12.000531

32. Wei, H., Z. Tong, and S. Jian, "Use of a genetic algorithm to optimize multistage erbium-doped fiber amplifier system with complex structures," Opt. Express, Vol. 12, No. 4, 531-544, 2004.
doi:10.1109/LPT.2005.859148

33. Zhang, A. P., X. W. Chen, J. H. Yan, Z. G. Guan, S. He, and H. Y. Tam, "Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs," IEEE Photon. Technol. Lett., Vol. 17, No. 12, 2559-2561, 2005.
doi:10.1109/JLT.2003.820041

34. Liu, X. and B. Lee, "Optimal design for ultra-broad-band amplifier," J. Lightwave Technol., Vol. 21, No. 12, 3446-3455, 2003.
doi:10.2528/PIER07121503

35. Li, W. T., X. W. Shi, L. Xu, and Y. Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07103004

36. Lu, Z. B., A. Zhang, and X. Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER08031904

37. Huang, C. H., C. C. Chiu, C. L. Li, and K. C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER07101702

38. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER08030904

39. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER07030904

40. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.

41. Li, W. T., L. Xu, and X. W. Shi, "A hybrid of genetic algorithm and particle swarm optimization for antenna design," PIERS Online, Vol. 4, No. 1, 56-60, 2008.
doi:10.2528/PIERB07112703

42. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07102501

43. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "A SAR autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
doi:10.1163/156939307783239474

44. Lee, K. C., C. W. Huang, and W. H. Chen, "Analysis of nonlinear microwave circuits by particle swarm algorithm," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1353-1365, 2007.
doi:10.1163/156939307780749110

45. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "Highfrequency phase error reduction in SAR using particle swarm of optimization algorithm," J. of Electromagn. Waves and Appl., Vol. 21, No. 6, 795-810, 2007.
doi:10.1163/156939306779322747

46. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779292273

47. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1785-1795, 2006.

48. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Chap. 7, Academic Press, 2001.

49. Engelbrecht, A. P., Fundamental of Computational Swarm Intelligence, Chap. 16, John Wiley & Sons, 2005.
doi:10.1109/50.65882

50. Miniscalco, W. J., "Erbium-doped glasses for fiber amplifiers at 1500 nm," J. Lightwave Technol., Vol. 9, No. 2, 234-250, 1991.

51. Liu, X. and B. Lee, "A fast and stable method for Raman amplifier propagation equations," Opt. Express, Vol. 11, No. 18, 2163-2176, 2003.
doi:10.1117/12.461655

52. Marhic, M. E. and D. E. Nikonov, "Low third-order glass-host nonlinearities in erbium-doped waveguide amplifiers," Proceedings of SPIE, Vol. 4645, 193, 2002.