1. Kang, X. K., L. W. Li, M. S. Leong, and P. S. Kooi, "A spheroidal vector wave function analysis of field and SAR distributions in a dielectric prolate spheroidal human head model," Progress In Electromagnetics Research, Vol. 22, 149-179, 1999.
doi:10.2528/PIER98090901 Google Scholar
2. Li, L. W., M. S. Leong, P. S. Kooi, and T. S. Yeo, "Specific absorption rates in human head due to handset antennas: A comparative study using FDTD method," J. of Electromagn. Waves and Appl., Vol. 14, 987-1000, 2000. Google Scholar
3. Gandhi, O. P., Q.-X. Li, and G. Kang, "Temperature rise for the human head for cellular telephones and for peak SARs prescribed in safety guidelines," IEEE Trans. Microw. Theory Tech., Vol. 49, 1607-1613, 2001.
doi:10.1109/22.942573 Google Scholar
4. Kang, X. K., L. W. Li, M. S. Leong, and P. S. Kooi, "A method of moments study of SAR inside spheroidal human head and current distribution along handset wire antennas," J. of Electromagn. Waves and Appl., Vol. 15, 61-75, 2001.
doi:10.1163/156939301X00643 Google Scholar
5. Yioultsis, T. V., T. I. Kosmanis, E. P. Kosmidou, T. T. Zygiridis, N. V. Kantartzis, T. D. Xenos, and T. D. Tsiboukis, "A comparative study of the biological effects of various mobile phone and wireless LAN antennas," IEEE Trans. Magn., Vol. 38, 777-780, 2002.
doi:10.1109/20.996201 Google Scholar
6. Hirata, A. and T. Shiozawa, "Correlation of maximum temperature increase and peak SAR in the human head due to handset antennas," IEEE Trans. Microw. Theory Tech., Vol. 51, 1834-1841, 2003.
doi:10.1109/TMTT.2003.814314 Google Scholar
7. Wang, J., O. Fujiwara, S. Watanabe, and Y. Yamanaka, "Computation with a parallel FDTD system of human-body effect on electromagnetic absorption for portable telephones," IEEE Trans. Microw. Theory Tech., Vol. 52, 53-58, 2004.
doi:10.1109/TMTT.2003.821232 Google Scholar
8. Whittow, W. G. and R. M. Edwards, "A study of changes to specific absorption rates in the human eye close to perfectly conducting spectacles within the radio frequency range 1.5 to 3.0 GHz," IEEE Trans. Antennas Propag., Vol. 52, 3207-3212, 2004.
doi:10.1109/TAP.2004.836417 Google Scholar
9. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501 Google Scholar
10. Kiminami, K., A. Hirata, Y. Horii, and T. Shiozawa, "A study on human body modeling for the mobile terminal antenna design at 400MHz band," J. of Electromagn. Waves and Appl., Vol. 19, 671-687, 2005.
doi:10.1163/1569393053305080 Google Scholar
11. Hadjem, A., D. Lautru, C. Dale, M. F. Wong, V. F. Hanna, and J. Wiart, "Study of specific absorption rate (SAR) induced in two child head models and in adult heads using mobile phones," IEEE Trans. Microw. Theory Tech., Vol. 53, 4-11, 2005.
doi:10.1109/TMTT.2004.839343 Google Scholar
12. Yoshida, K., A. Hirata, Z. Kawasaki, and T. Shiozawa, "Human head modeling for handset antenna design at 5 GHz band," J. of Electromagn. Waves and Appl., Vol. 19, 401-411, 2005.
doi:10.1163/1569393054139679 Google Scholar
13. Li, Q.-X. and O. P. Gandhi, "Thermal implications of the new relaxed IEEE RF safety standard for head exposures to cellular telephones at 835 and 1900 MHz," IEEE Trans. Microw. Theory Tech., Vol. 54, 3146-3154, 2006.
doi:10.1109/TMTT.2006.877050 Google Scholar
14. Hirata, A., M. Fujimoto, T. Asano, J. Wang, O. Fujiwara, and T. Shiozawa, "Correlation between maximum temperature increase and peak SAR with different average schemes and masses," IEEE Trans. Electromagn. Compat., Vol. 48, 569-578, 2006.
doi:10.1109/TEMC.2006.877784 Google Scholar
15. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analysis of a 900/1800-MHz dual-band gap loop antenna on a handset with proximate head and hand model," J. of Electromagn. Waves and Appl., Vol. 21, 107-122, 2007.
doi:10.1163/156939307779391722 Google Scholar
16. Togashi, T., T. Nagaoka, S. Kikuchi, K. Saito, S. Watanabe, M. Takahashi, and K. Itoh, "FDTD calculations of specific absorption rate in fetus caused by electromagnetic waves from mobile radio terminal using pregnant woman model," IEEE Trans. Microw. Theory Tech., Vol. 56, 554-559, 2008.
doi:10.1109/TMTT.2007.914625 Google Scholar
17. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998. Google Scholar
18. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-2005, 2005 Edition.
19. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-1999, 1999 Edition.
20. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.
21. ftp://starview.brooks.af.mil/EMF/dosimetry models.
22. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
23. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
24. Ismail, N. H. and A. T. Ibrahim, "Temperature distribution in the human brain during ultrasound hyperthermia," J. of Electromagn. Waves and Appl., Vol. 16, 803-811, 2002.
doi:10.1163/156939302X00165 Google Scholar
25. Kivekas, O., J. Ollikainen. T. Lehtiniemi, and P. Vainikainen, "Bandwidth, SAR, and efficiency of internal mobile phone antennas," IEEE Trans. Electromag. Compat., Vol. 46, 71-85, 2004.
doi:10.1109/TEMC.2004.823613 Google Scholar