1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2 Ed., Arctech House, 2000.
2. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, No. 15.3, 308-322, CRC Press, 1993.
3. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "An extended fdtd method for the treatment of partially magnetized ferrites," IEEE Trans. Magn., Vol. 31, 1666-1669, 1995.
doi:10.1109/20.376355 Google Scholar
4. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "A treatment of magnetized ferrites using the FDTD method," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 5, 136-138, 1993.
doi:10.1109/75.217207 Google Scholar
5. Pereda, J. A., L. A. Vielva, M. A. Solano, A. Vegas, and A. Prieto, "FDTD analysis of magnetized ferrites: Application to the calculation of dispersion characteristics of ferrite-loaded waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 2, 350-357, 1995.
doi:10.1109/22.348095 Google Scholar
6. Zheng, G. and K. Chen, "Transient analysis of microstrip lines with ferrite substrate by extended FD-TD method," Int. J. of Infrared and Millimeter Waves, Vol. 13, No. 8, 1115-1125, 1992.
doi:10.1007/BF01009054 Google Scholar
7. Reineix, A., T. Monediere, and F. Jecko, "Ferrite analysis using the finite-difference time-domain (FDTD) method," Microwave and Optical Technology Letters, Vol. 5, No. 13, 685-686, 1992.
doi:10.1002/mop.4650051311 Google Scholar
8. Okoniewski, M. and E. Okoniewska, "FDTD analysis of magnetized ferrites: A more efficient algorithm," IEEE Microwave and Guided Wave Letters, Vol. 4, No. 6, 169-171, 1994.
doi:10.1109/75.294281 Google Scholar
9. Vacus, O. and N. Vukadinovic, "Dynamic susceptibility computations for thin magnetic films," Journal of Computational and Applied Mathematics, Vol. 176, 263-281, 2005.
doi:10.1016/j.cam.2004.07.016 Google Scholar
10. Soohoo, R. F., Magnetic Thin Films, No. 10.2, 188, Harper and Row, 1965.
11. Soohoo, R. F., Magnetic Thin Films, No. 11.1, 206, Harper and Row, 1965.
12. Brown, W. F., Micromagnetics, Robert E. Krieger Publishing Co., 1978.
13. "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagations, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
14. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
15. Slodicka, M. and I. Cimrak, "Numerical study of nonlinear ferromagnetic materials," Applied Numerical Mathematics, Vol. 46, 95-111, 2003. Google Scholar
16. Hicken, R. J. and J. Wu, "Observation of ferromagnetic resonance in the time domain," J. Appl. Phys., Vol. 85, No. 8, 4580-4582, 1999.
doi:10.1063/1.370414 Google Scholar
17. Wu, J., N. D. Hughes, J. R. Moore, and R. J. Hicken, "Excitation and damping of spin excitations in ferromagnetic thin films," Journal of Magnetism and Magnetic Materials, Vol. 241, 96-109, 2002.
doi:10.1016/S0304-8853(01)00930-1 Google Scholar
18. Soohoo, R. F., Magnetic Thin Films, No. 4.2, 40, Harper and Row, 1965.
19. Wagner, C. L. and J. B. Schneider, "Divergent fields, charge, and capacitance in FDTD simulations," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 12, 2131-2136, 1998.
doi:10.1109/22.739294 Google Scholar
20. Osborn, J. A., "Demagnetizing factors of the general ellipsoid," Physical Review, Vol. 67, No. 11-12, 351-357, 1945.
doi:10.1103/PhysRev.67.351 Google Scholar
21. Soohoo, R. F., Microwave Magnetics, No. 7.1, 166, Harper & Row, 1985.
22. Smythe, W. R., Static and Dynamic Electricity, 2 Ed., No. 7.09, 270, McGraw-Hill, 1950.
23. Soohoo, R. F., Magnetic Thin Films, No. 11.1(a), 205, Harper and Row, 1965.
24. Soohoo, R. F., Microwave Magnetics, No. 7.3, 174, Harper & Row, 1985.
25. Soohoo, R. F., Microwave Magnetics, No. 7.4, 178, Harper & Row, 1985.
26. Park, J. P., P. Eames, D. M. Engebretson, J. Berezovsky, and P. A. Crowell, "Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires," Phys. Rev. Lett., Vol. 89, No. 27, 277201, 2002.
doi:10.1103/PhysRevLett.89.277201 Google Scholar
27. Gubbiotti, G., M. Conti, G. Carlotti, P. Candeloro, E. D. Fabrizio, K. Y. Guslienko, A. Andre, C. Bayer, and A. N. Slavin, "Magnetic field dependence of quantized and localized spin-wave modes in thin rectangular magnetic dots," J. Phys.: Condens. Matter, Vol. 16, 7709-7721, 2004.
doi:10.1088/0953-8984/16/43/011 Google Scholar
28. Aharoni, A., Introduction to the Theory of Ferromagnetism, 2 Ed., No. 11, 238, Oxford Science Publications, 2000.
29. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference timedomain method without the courant stability conditions," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026 Google Scholar
30. Liu, Y., "Fourier analysis of numerical algorithms for the maxwell equations," J. of Computational Physics, Vol. 124, 396-416, 1996.
doi:10.1006/jcph.1996.0068 Google Scholar
31. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, No. 19.3, 360, CRC Press, 1993.
32. De Flavis, F., M. G. Noro, R. E. Diaz, G. Franceschetti, and N. G. Alexopoulos, "A time-domain vector potential formulation for the solution of electromagnetic problems," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 9, 310-312, 1998.
doi:10.1109/75.720465 Google Scholar
33. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave and Optical Technology Letters, Vol. 15, No. 3, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 Google Scholar
34. Leung, W. and Y. Chen, "Transformed-space nonuniform pseudospectral time-domain algorithm," Microwave and Optical Technology Letters, Vol. 28, No. 6, 391-396, 2001.
doi:10.1002/1098-2760(20010320)28:6<391::AID-MOP1051>3.0.CO;2-5 Google Scholar