Vol. 15
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-13
Modeling of Shielding Composite Materials and Structures for Microwave Frequencies
By
Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009
Abstract
Composites containing conducting inclusions are required in many engineering applications, especially, for the design of microwave shielding enclosures to ensure electromagnetic compatibility and electromagnetic immunity. Herein, multilayer shielding structures are studied, with both absorbing and reflecting composite layers. In this paper, fiber-filled composites are considered. For modeling absorbing composites with low concentration of conducting cylindrical inclusions (below the percolation threshold), the Maxwell Garnett theory is used. For reflecting layers, when concentration of inclusions is close to or above the percolation threshold, the McLachlan formulation is used. Frequency dependencies for an effective permittivity are approximated by the Debye curves using a curve-fitting procedure, in particular, a genetic algorithm.
Citation
Marina Koledintseva, James Drewniak, Richard DuBroff, Konstantin Rozanov, and Bruce Archambeault, "Modeling of Shielding Composite Materials and Structures for Microwave Frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410
References

1. Norman, R. H., Electrically Conducting Rubber Composites, Elsevier, 1970.

2. Wang, Y. and X. Jing, "Intrinsically conducting polymers for electromagnetic interference shielding," Polymers for Advanced Technologies, Vol. 16, 344-351, 2005.
doi:10.1002/pat.589        Google Scholar

3. Faezc, R., R. H. Schuster, and M. A. De Paoli, "A conductive elastomer based on EPDM and polyaniline 2. Effect of the crosslinking method," European Polymer Journal, Vol. 38, 2459-2463, 2002.
doi:10.1016/S0014-3057(02)00133-7        Google Scholar

4. Fox, R. T., V. Wani, K. E. Howard, A. Bogle, and L. Kempel, "Conductive polymer composite materials and their utility in electromagnetic shielding applications," Journal of Applied Polymer Science, Vol. 107, No. 4, 2558-2566, 2008.
doi:10.1002/app.27317        Google Scholar

5. Mather, P. J. and K. M. Thomas, "Carbon black/high density polyethylene conducting composite materials," Journal of Material Science, Vol. 32, 401-407, 1997.
doi:10.1023/A:1018557501174        Google Scholar

6. Radford, D. W., "Metallized microballoon filled composite EMI shielding materials," Journal of Testing and Evaluation (JTE), Vol. 21, No. 5, 396-401, 1993.
doi:10.1520/JTE11783J        Google Scholar

7. Rea, S. P., D. Wylie, D. Linton, E. Orr, and J. McConnell, "EMI shielding of woven carbon fibre composites," IEEE High Frequency Postgraduate Student Colloquium, 205-210, UMIST, Manchester, UK, Sep. 6-7, 2004.        Google Scholar

8. Ding, J., S. P. Rea, E. Orr, and J. McConnell, "Mixture properties of carbon fibre composite materials for electronics shielding in systems packaging," Electronics System-Integration Technology Conference, 2006. 1st, 19-25, Sep. 5-7, 2006.        Google Scholar

9. Li, M., J. Neubel, J. L. Drewniak, R. E. DuBroff, T. H. Hubing, and T. P. Van Doren, "EMI from airflow aperture arrays in shielding enclosures --- Experiments, FDTD and MOM modeling," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 3, 265-275, Aug. 2000.
doi:10.1109/15.865333        Google Scholar

10. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies,", Vol. 1, 169-174, Chicago, IL, Aug. 2005.        Google Scholar

11. Koledintseva, M. Y., P. C. Ravva, J. L. Drewniak, A. A. Kitaitsev, and A. A. Shinkov, "Engineering of ferrite-graphite media for microwave shields," Proc. Int. IEEE Symp. Electromag. Compat., 598-602, Portland, OR, Aug. 2006.        Google Scholar

12. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.
doi:10.2528/PIER07073103        Google Scholar

13. De Rosa, I. M., F. Sarasini, M. S. Sarto, and A. Tamburrano, "EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 3, Part 1, 556-563, 2008.
doi:10.1109/TEMC.2008.926818        Google Scholar

14. Yang, Y., M. C. Gupta, K. L. Dudley, and R. W. Lawrence, "A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites," Journal of Nanoscience and Nanotechnology, Vol. 5, 927-931, 2005.
doi:10.1166/jnn.2005.115        Google Scholar

15. Li, Y., C. Chen, S. Zhang, Y. Ni, and J. Huang, "Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films," Applied Surface Science, Vol. 254, No. 18, 5766-5771, Jul. 2008.
doi:10.1016/j.apsusc.2008.03.077        Google Scholar

16. Liu, L., S. Matitsine, Y. B. Gan, L. F. Chen, L. B. Kong, and K. N. Rozanov, "Frequency dependence of effective permittivity of carbon nanotube composites," J. Appl. Phys., Vol. 101, 094106, 2007.
doi:10.1063/1.2728765        Google Scholar

17. Matitsine, S. M., K. M. Hock, L. Liu, Y. B. Gan, A. N. Lagarkov, and K. N. Rozanov, "Shift of resonance frequency of long conducting fibers embedded in a composite," J. Appl. Phys., Vol. 94, No. 2, 1146-1154, Jul. 15, 2003.
doi:10.1063/1.1577395        Google Scholar

18. Sihvola, A. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosc. Remote Sens., Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045        Google Scholar

19. Neelakanta, P. S., Handbook of Electromagnetic Materials, Boca Raton, CRC Press, 1995.

20. Kuester, E. F. and C. L. Holloway, "Comparison of approximations for effective parameters of artificial dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 3, 1752-1755, 1990.
doi:10.1109/22.60028        Google Scholar

21. Sheng, P., "Theory of dielectric function of granular composite media," Phys. Rev. Letters, Vol. 45, No. 1, 60-63, 1980.
doi:10.1103/PhysRevLett.45.60        Google Scholar

22. Doyle, W. T. and I. S. Jacobs, "The influence of particle shape on dielectric enhancement in metal-insulator composites," J. Appl. Phys., Vol. 71, No. 8, 3926-3936, 1992.
doi:10.1063/1.350862        Google Scholar

23. Diaz, R. E., W. M. Merrill, and N. G. Alexopoulos, "Analytical framework for the modeling of effective media," J. Appl. Phys., Vol. 84, No. 12, 8615-6826, 1998.
doi:10.1063/1.369013        Google Scholar

24. Maxwell, Garnett and J. C, "Colors in metal glasses and metal films," Philos. Trans. Royal Soc. London, Sect. A, Vol. 3, 385-420, 1904.        Google Scholar

25. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, Santa Clara, CA, Aug. 9-13, 2004.        Google Scholar

26. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modeling the permittivity of composite materials with general effective medium equation," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992.        Google Scholar

27. Koledintseva, M. Y., G. Antonini, J. Zhang, A. Orlandi, K. N. Rozanov, and J. L. Drewniak, "Reconstruction of the parameters of Debye and Lorentzian dispersive media using a Genetic Algorithm," Proc. IEEE Int. Symp. Electromag. Compat., Vol. 2, 898-903, Boston, MA, Aug. 18-22, 2003.        Google Scholar

28. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chap. 5, online Rutgers University, Multilayer Structures, Nov. 2004.

29. Koledintseva, M. Y., V. V. Bodrov, I. V. Sourkova, M. M. Sabirov, and V. I. Sourkov, "Unified spectral technique application for study of radiator behavior near planar layered composites," Progress In Electromagnetics Research, Vol. 66, 317-357, 2006.
doi:10.2528/PIER06111701        Google Scholar

30. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601        Google Scholar

31. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903        Google Scholar

32. Youngs, I. J., "Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory," J. Phys, D: Appl. Phys., Vol. 35, 3127-3137, 2002.
doi:10.1088/0022-3727/35/23/314        Google Scholar

33. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, Mar. 1996.
doi:10.1103/PhysRevB.53.6318        Google Scholar

34. Obukhov, S. P., "Percolation in system of randomly distributed sticks," J. Physics, A: Math. Gen., Vol. 21, 3975-3978, 1988.
doi:10.1088/0305-4470/21/20/017        Google Scholar

35. Lagarkov, A. N., S. M. Matytsin, K. N. Rozanov, and A. K. Sarychev, "Dielectric properties of fiber filled composites," J. Appl. Phys., Vol. 84, No. 7, 3806-3814, Oct. 1998.
doi:10.1063/1.368559        Google Scholar

36. Teflon Dielectric Properties, http://www.dupont.com/Teflon Industrial/en US/products/product by name/teflon., Nov. 2005.

37. Koledintseva, M., J. Drewniak, Y. J. Zhang, J. Lenn, and M. Thoms, "Modeling of ferrite-based materials for shielding enclosures," J. Magn. Magn. Mater. (JMMM), Vol. 321, 730-733, 2009.
doi:10.1016/j.jmmm.2008.11.037        Google Scholar

38. Sihvola, A. Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series 47, The IEE, UK, 1999.