Vol. 13
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-01-20
Analysis on the Stealth Characteristic of Two Dimensional Cylinder Plasma Envelopes
By
Progress In Electromagnetics Research Letters, Vol. 13, 83-92, 2010
Abstract
Stealth characteristic of two dimensional cylinder plasma envelopes is studied. Three cases about plasma refraction effect, reflection characteristic and attenuation by absorbing electromagnetic wave (EMW) are concerned synthetically. As for plasma refraction stealth, EMW traces equation in cylinder plasma is deduced; a novel concept of plasma refraction deviation angle is presented; the relation between refraction deviation angle and incidence angle of EMW is yielded; the relation between refraction deviation angle and plasma density distribution is made out. As for reflection stealth and attenuation stealth, reflection calculation of multi-layer plasma is presented first, and plasma collision frequency as well as corresponding collision absorption is taken into account simultaneously, then EMW reflectivity with double-path attenuation is obtained. It is shown that cylinder plasma envelopes considering the three cases above could make distinct stealth.
Citation
Lai-Xuan Ma Hou Zhang Zhong Li Chen-Xin Zhang , "Analysis on the Stealth Characteristic of Two Dimensional Cylinder Plasma Envelopes," Progress In Electromagnetics Research Letters, Vol. 13, 83-92, 2010.
doi:10.2528/PIERL09100903
http://www.jpier.org/PIERL/pier.php?paper=09100903
References

1. Vidmar, R. J., "On the use of atmospheric press plasma as electromagnetic reflectors and absorbers," IEEE Trans. on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

2. Gregoire, D. J., J. Santoru, and R. W. Schumacher, Electromagnetic wave propagation in unmagnetized plasmas, AD-A250710, 1992.

3. Laroussi, M., "Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Trans. on Plasma Science, Vol. 21, No. 4, 366-372, 1993.
doi:10.1109/27.234562

4. Hu, B. J., G. Wei, and S. L. Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Trans. on Plasma Science, Vol. 27, No. 4, 1131-1135, 1999.
doi:10.1109/27.782293

5. Petrin, A. B., "Nonlinear interaction of microwave and plane magnetoactive plasma layer," IEEE Trans. on Plasma Science, Vol. 26, No. 2, 150-158, 1998.
doi:10.1109/27.669617

6. Petrin, A. B., "On the transmission of microwaves through plasma layer," IEEE Trans. on Plasma Science, Vol. 28, No. 3, 1000-1008, 2000.
doi:10.1109/27.887768

7. Petrin, A. B., "Transmission of microwaves through magnetoactive plasma," IEEE Trans. on Plasma Science, Vol. 29, No. 3, 471-478, 2001.
doi:10.1109/27.928945

8. Liu, S. B., J. J. Mo, and N. C. Yuan, "The electromagnetic wave paths and applications of inhomogeneous plasma spheres," Chinese Journal of Radio Science, Vol. 17, No. 2, 134-138, 2002 (in Chinese).

9. Mo, J. J., S. B. Liu, and N. C. Yuan, "Study on basic theory for plasma stealth," Modern Radar, Vol. 22, No. 3, 9-12, 2002 (in Chinese).

10. Tang, D. L., et al., "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Trans. on Plasma Science, Vol. 31, No. 3, 405-410, 2003.
doi:10.1109/TPS.2003.811648

11. Qian, Z. H., R.-S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

12. Huang, S. J. and F. Li, "Time domain analysis of electromagnetic pulse propagation in magnetized plasma using Z transforms," High Power Laser and Particle Beams, Vol. 17, No. 1, 109-112, 2005 (in Chinese).

13. Zou, W., et al., "Refractive index of HPM at transionospereric propagation," High Power Laser and Particle Beams, Vol. 18, No. 10, 1673-1676, 2006 (in Chinese).

14. Lindell, I. V. and A. H. Sihvola, "Reflection and transmission of waves at the interface of perfect eltromagnetic conductor (PEMC)," Progress In Electromagnetics Research B, Vol. 5, 169-183, 2008.
doi:10.2528/PIERB08022010

15. Ma, L.-X., H. Zhang, and C.-X. Zhang, "Analysis on the reflection characteristic of electromagnetic wave incidence in closed non-magnetized plasma ," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17--18, 2285-2296, 2008.
doi:10.1163/156939308787543877