Vol. 12
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
0000-00-00
A Low-Loss Patch LTCC BPF for 60 GHz System-on-Package (Sop) Applications
By
Progress In Electromagnetics Research Letters, Vol. 12, 183-189, 2009
Abstract
In this paper, a three-dimensional (3-D) low-loss and wideband BPF based on lowtemperature co-fired ceramic (LTCC) has been presented for 60 GHz wireless communication applications. Via pads in the vertical via transitions are designed as an additional resonator for lowloss and wide-bandwidth of the BPF. The proposed BPF has been designed by investigating its characteristics as a function of dimensions of the resonators such as a single-mode patch and via pads and also a length of feed lines are optimized for effective coupling. The designed BPF was fabricated in a 6-layer LTCC dielectric. The fabricated BPF shows a centre frequency (fc) of 61.46 GHz and a 3dB bandwidth of 10.5% from 58.2 to 64.7 GHz (6.47 GHz). An insertion loss of -2.88 dB at fc and return losses below -10 dB are achieved. Its whole size is 4.72 × 1.7 × 0.684 mm3.
Citation
Young Chul Lee, and Tae Wan Kim, "A Low-Loss Patch LTCC BPF for 60 GHz System-on-Package (Sop) Applications," Progress In Electromagnetics Research Letters, Vol. 12, 183-189, 2009.
doi:10.2528/PIERL09110903
References

1. Lee, Y. C., W.-I. Chang, Y. H. Cho, and C. S. Park, "A very compact 60 GHz transmitter integrating GaAs MMICs on LTCC passive circuits for wireless terminal applications," IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, 313-316, October 2004.

2. Lee, Y. C., W.-I. Chang, and C. S. Park, "Monolithic LTCC sip transmitter for 60 GHz wireless communication terminals," IEEE MTT-S Int. Microwave Symposium Digest, June 2005.

3. Jung, D. Y., W.-I. Chang, K. C. Eun, and C. S. Park, "60-GHz system-on-package transmitter integrating sub-harmonic frequency amplitude shift-keying modulator," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 8, 1786-1793, 2007.
doi:10.1109/TMTT.2007.901596

4. Seki, T., K. Nishikawa, Y. Suzuki, I. Toyoda, and K. Tsunekawa, "60 GHz monolithic LTCC module for wireless communication systems," European Microwave Conference (EuMC), 1671-1674, 2006.
doi:10.1109/EUMC.2006.281442

5. Lee, Y. C. and C. S. Park, "A fully embedded 60-GHz novel BPF for LTCC system-in-package applications," IEEE Transactions on Advanced Packaging, Vol. 29, No. 4, 804-809, 2006.
doi:10.1109/TADVP.2006.884807

6. Lee, J.-H., S. Pinel, J. Laskar, and M. M. Tentzeris, "Design and development of advanced cavity-based dual-mode filters using low-temperature co-fired ceramic technology for V-band gigabit wireless systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1869-1879, 2007.
doi:10.1109/TMTT.2007.904328

7. Jung, D. Y., W. I. Chang, J. H. Kim, and C. S. Park, "A low loss multi-layer dielectric waveguide filter for 60-GHz system-on-package applications," IEICE Trans. Fundamentals, Vol. E89-A, No. 6, 1690-1691, 2006.
doi:10.1093/ietfec/e89-a.6.1690

8. Shen, T.-M., C.-F. Chen, T.-Y. Huang, and R.-B. Wu, "Design of vertically stacked waveguide filters in LTCC," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 8, 1771-1779, 2007.
doi:10.1109/TMTT.2006.886004

9. Yang, K. S., S. Pinel, I. K. Kim, and J. Laskar, "Low-loss integrated passive circuits using liquid-crystal polymer system-on-package (SoP) technology for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, 4572-4579, 2006.
doi:10.1109/LED.2008.2006696

10. Yeh, L.-K., C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, "A 24/60-GHz CMOS on-chip dual-band bandpass filter using trisection dual-behavior resonators," IEEE Electron. Device Letters, Vol. 29, No. 12, 1373-1375, 2008.
doi:10.2528/PIERL07122805

11. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz LTCC SoP applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.

12. CST MICROWAVE STUDIO, CST Inc., , [Online] Available: http://www.cst.com.

13. RN2 Technologies, [Online] Available: http://www.RN2LTCC.com.
doi:10.1109/5.119568

14. Pozar, D. M., "Microstrip antennas," IEEE Proc., Vol. 80, 79-91, 1992.